長春市第十一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
長春市第十一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
長春市第十一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
長春市第十一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
長春市第十一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長春市第十一中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在等比數(shù)列中,,,,則等于()A. B. C. D.2.如果圓上總存在點到原點的距離為,則實數(shù)的取值范圍為()A. B. C. D.3.若等差數(shù)列的前5項之和,且,則()A.12 B.13 C.14 D.154.設(shè)是等差數(shù)列的前項和,若,則A. B. C. D.5.在等差數(shù)列中,若,則()A.10 B.15 C.20 D.256.如圖,點為正方形的中心,為正三角形,平面平面是線段的中點,則()A.,且直線是相交直線B.,且直線是相交直線C.,且直線是異面直線D.,且直線是異面直線7.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.8.某班設(shè)計了一個八邊形的班徽(如圖),它由腰長為1,頂角為的四個等腰三角形,及其底邊構(gòu)成的正方形所組成,該八邊形的面積為A.; B.C. D.9.等差數(shù)列的前項和為,若,則()A.27 B.36 C.45 D.5410.已知等差數(shù)列中,則()A.10 B.16 C.20 D.24二、填空題:本大題共6小題,每小題5分,共30分。11.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.12.在半徑為的球中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差是__________.13.己知函數(shù),有以下結(jié)論:①的圖象關(guān)于直線軸對稱②在區(qū)間上單調(diào)遞減③的一個對稱中心是④的最大值為則上述說法正確的序號為__________(請?zhí)钌纤姓_序號).14.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調(diào)查,為此將他們隨機(jī)編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內(nèi)的人數(shù)是______15.某幾何體的三視圖如圖所示,則該幾何體的體積為__________.16.假設(shè)我國國民生產(chǎn)總值經(jīng)過10年增長了1倍,且在這10年期間我國國民生產(chǎn)總值每年的年增長率均為常數(shù),則______.(精確到)(參考數(shù)據(jù))三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:(1)設(shè)數(shù)列滿足,求的前項和:(2)證明數(shù)列是等差數(shù)列,并求其通項公式;18.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求方程的解構(gòu)成的集合.19.已知:,,,,求的值.20.已知函數(shù).(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值.21.在平面直角坐標(biāo)系中,直線截以坐標(biāo)原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點,,當(dāng)時,求直線的方程;(3)設(shè),是圓上任意兩點,點關(guān)于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

直接利用等比數(shù)列公式計算得到答案.【詳解】故選:C【點睛】本題考查了等比數(shù)列的計算,屬于簡單題.2、B【解析】

將圓上的點到原點的距離轉(zhuǎn)化為圓心到原點的距離加減半徑得到答案.【詳解】,圓心為半徑為1圓心到原點的距離為:如果圓上總存在點到原點的距離為即圓心到原點的距離即故答案選B【點睛】本題考查了圓上的點到原點的距離,轉(zhuǎn)化為圓心到原點的距離加減半徑是解題的關(guān)鍵.3、B【解析】試題分析:由題意得,,又,則,又,所以等差數(shù)列的公差為,所以.考點:等差數(shù)列的通項公式.4、A【解析】,,選A.5、C【解析】

設(shè)等差數(shù)列的公差為,得到,又由,代入即可求解,得到答案.【詳解】由題意,設(shè)等差數(shù)列的公差為,則,又由,故選C.【點睛】本題主要考查了等差數(shù)列的通項公式的應(yīng)用,其中解答中熟記等差數(shù)列的通項公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了計算與求解能力,屬于基礎(chǔ)題,.6、B【解析】

利用垂直關(guān)系,再結(jié)合勾股定理進(jìn)而解決問題.【詳解】如圖所示,作于,連接,過作于.連,平面平面.平面,平面,平面,與均為直角三角形.設(shè)正方形邊長為2,易知,.,故選B.【點睛】本題考查空間想象能力和計算能力,解答本題的關(guān)鍵是構(gòu)造直角三角性.7、C【解析】

根據(jù)條件即可求出,從而可求出,,,然后可設(shè)與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設(shè)與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運(yùn)用,向量的模的求法,以及利用數(shù)量積求向量夾角.8、A【解析】

試題分析:利用余弦定理求出正方形面積;利用三角形知識得出四個等腰三角形面積;故八邊形面積.故本題正確答案為A.考點:余弦定理和三角形面積的求解.【方法點晴】本題是一道關(guān)于三角函數(shù)在幾何中的應(yīng)用的題目,掌握正余弦定理是解題的關(guān)鍵;首先根據(jù)三角形面積公式求出個三角形的面積;接下來利用余弦定理可求出正方形的邊長的平方,進(jìn)而得到正方形的面積,最后得到答案.9、B【解析】

利用等差數(shù)列的性質(zhì)進(jìn)行化簡,由此求得的值.【詳解】依題意,所以,故選B.【點睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.10、C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.12、【解析】

根據(jù)正四棱柱外接球半徑的求解方法可得到正四棱柱底面邊長和高的關(guān)系,利用基本不等式得到,得到側(cè)面積最大值為;根據(jù)球的表面積公式求得球的表面積,作差得到結(jié)果.【詳解】設(shè)球內(nèi)接正四棱柱的底面邊長為,高為則球的半徑:正四棱柱的側(cè)面積:球的表面積:當(dāng)正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差為:本題正確結(jié)果:【點睛】本題考查多面體的外接球的相關(guān)問題的求解,關(guān)鍵是能夠根據(jù)外接球半徑構(gòu)造出關(guān)于正棱柱底面邊長和高的關(guān)系式,利用基本不等式求得最值;其中還涉及到球的表面積公式的應(yīng)用.13、②④【解析】

根據(jù)三角函數(shù)性質(zhì),逐一判斷選項得到答案.【詳解】,根據(jù)圖像知:①的圖象關(guān)于直線軸對稱,錯誤②在區(qū)間上單調(diào)遞減,正確③的一個對稱中心是,錯誤④的最大值為,正確故答案為②④【點睛】本題考查了三角函數(shù)的化簡,三角函數(shù)的圖像,三角函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)的綜合理解和應(yīng)用.14、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣15、【解析】由三視圖知該幾何體是一個半圓錐挖掉一個三棱錐后剩余的部分,如圖所示,所以其體積為.點睛:求多面體的外接球的面積和體積問題常用方法有(1)三條棱兩兩互相垂直時,可恢復(fù)為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的對稱性,球心為上下底面外接圓的圓心連線的中點,再根據(jù)勾股定理求球的半徑;(3)如果設(shè)計幾何體有兩個面相交,可過兩個面的外心分別作兩個面的垂線,垂線的交點為幾何體的球心,本題就是第三種方法.16、【解析】

根據(jù)題意,設(shè)10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,結(jié)合題意可得,解可得的值,即可得答案.【詳解】解:根據(jù)題意,設(shè)10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,則有,即,解可得:,故答案為:.【點睛】本題考查函數(shù)的應(yīng)用,涉及指數(shù)、對數(shù)的運(yùn)算,關(guān)鍵是得到關(guān)于的方程,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,【解析】

(1)令n=1,即可求出,計算出,利用錯位相減求出。(2)利用公式化簡即可得證。再利用,求出公差,即可寫出通項公式。【詳解】解:在中,令,得,所以,①,②①②得化簡得由得:,兩式相減整理得:從而有,相減得:即故數(shù)列為等差數(shù)列,又,故公差【點睛】本題主要考查利用錯位相減法求等差乘等比數(shù)列的前n項的和,屬于基礎(chǔ)題。18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用二倍角公式化簡函數(shù),再逆用兩角和的正弦公式進(jìn)一步化簡函數(shù),代入最小正周期公式即可得解;(Ⅱ)由得,則,求解x并寫成集合形式.【詳解】(Ⅰ),所以函數(shù)的最小正周期.(Ⅱ)由得,,解得因此方程的解構(gòu)成的集合是:.【點睛】本題考查簡單的三角恒等變換,已知三角函數(shù)值求角的集合,屬于基礎(chǔ)題.19、【解析】

先由同角三角函數(shù)的平方關(guān)系求出,,然后結(jié)合兩角和的余弦公式求解即可.【詳解】解:由,,,,所以,,則.【點睛】本題考查了同角三角函數(shù)的平方關(guān)系,重點考查了兩角和的余弦公式,屬基礎(chǔ)題.20、(1);單調(diào)遞增區(qū)間為:;(2)最大值;最小值.【解析】

(1)先將函數(shù)化簡整理,得到,由得到最小正周期;根據(jù)正弦函數(shù)的對稱軸,即可列式,求出對稱軸;(2)先由,得到,根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】(1)因為,所以最小正周期為:;由得,即單調(diào)遞增區(qū)間是:;(2)因為,所以,因此,當(dāng)即時,取最小值;當(dāng)即時,取最大值;【點睛】本題主要考查正弦型三角函數(shù)的周期、對稱軸,以及給定區(qū)間的最值問題,熟記正弦函數(shù)的性質(zhì),以及輔助角公式即可,屬于常考題型.21、(1);(2);(3)見解析【解析】

(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結(jié)合勾股定理,可以求出圓的半徑,進(jìn)而可以求出圓的方程;(2)設(shè)出直線的截距式方程,利用圓的切線性質(zhì),得到一個方程,結(jié)合已知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論