行政職業能力測試題庫數量關系習題(鞏固)_第1頁
行政職業能力測試題庫數量關系習題(鞏固)_第2頁
行政職業能力測試題庫數量關系習題(鞏固)_第3頁
行政職業能力測試題庫數量關系習題(鞏固)_第4頁
行政職業能力測試題庫數量關系習題(鞏固)_第5頁
已閱讀5頁,還剩66頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

行政職業能力測試題庫數量關系習題第一部分單選題(200題)1、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。2、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。3、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。4、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。5、某收藏家有三個古董鐘,時針都掉了,只剩下分針,而且都走得較快,每小時分別快2分鐘、6分鐘及12分鐘。如果在中午將這三個鐘的分針都調整指向鐘面的12點位置,多少小時后這3個鐘的分針會指在相同的分鐘位置?

A.24

B.26

C.28

D.30

【答案】:答案:D

解析:由題意可得:假設每小時快2分鐘、快6分鐘、快12分鐘的古董鐘分別為A鐘、B鐘、C鐘,則B鐘與A鐘速度差為分鐘/小時,已知整個鐘盤有60分鐘,即經過小時,B鐘的分針比A鐘的分針恰好多走一圈,且此時兩鐘分針重合,同理,C鐘與A鐘速度差為分鐘/小時,即經過小時,C鐘的分針比A鐘的分針恰好多走一圈,此時兩鐘分針重合,取6和15的最小公倍數30,即經過30小時,B鐘的分針比A鐘的分針恰好多走2圈,C鐘的分針比A鐘的分針恰好多走5圈,且此時三個分針處于同一個位置。故正確答案為D。6、12,23,34,45,56,()

A、66

B、67

C、68

D、69

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。7、4,10,34,130,()

A、184

B、258

C、514

D、1026

【答案】:答案:C

解析:解法一:二級等差數列變式。解法二:從第三項開始,第三項等于第二項的5倍減去第一項的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故選C。8、甲乙兩車早上分別同時從A、B兩地出發駛向對方所在城市,在分別到達對方城市并各自花費1小時卸貨后,立刻出發以原速返回出發地。甲車的速度為60千米/小時,乙車的速度為40千米/小時,兩地之間相距480千米。問兩車第二次相遇距離兩車早上出發經過了多少個小時?()

A、13.4

B、14.4

C、15.4

D、16.4

【答案】:答案:C

解析:根據“分別同時從A.B兩地出發”、“兩車第二次相遇”,可知考查的是兩端出發的多次相遇問題,公式為(v1+v2)t=(2n-1)S。代入數據得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花費一小時卸貨”,故經過了14.4+1=15.4小時。故選C。9、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。10、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()

A、7個

B、8個

C、9個

D、10個

【答案】:答案:C

解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。11、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。12、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。13、在一次知識競賽中,甲、乙兩單位平均分為85分,甲單位得分比乙單位高10分,則乙單位得分為()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根據“甲、乙平均分為85分”,可得總分為85×2=170(分)。設乙得分為x,那么甲得分為x+10,由題意有x+x+10=170,解得x=80。故選C。14、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。15、2,2,3,4,9,32,()

A、129

B、215

C、257

D、283

【答案】:答案:D

解析:2×2-1=3,3×2-2=4,4×3-3=9,9×4-4=32,第n+2項=第n項×第(n+1)項-n(n=1,2,…),即所填數字為32×9-5=283。故選D。16、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。17、將所有由1、2、3、4組成且沒有重復數字的四位數,按從小到大的順序排列,則排在第12位的四位數是()。

A、3124

B、2341

C、2431

D、3142

【答案】:答案:C

解析:當千位數字是1時有=6種四位數,當千位數字是2時也有=6種四位數,因此排在第12位的就是千位數字為2的最大四位數,即2431。故選C。18、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。19、140支社區足球隊參加全市社區足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。20、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。21、7,9,-1,5,()

A、3

B、-3

C、2

D、-2

【答案】:答案:B

解析:第三項=(第一項-第二項)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故選B。22、5,17,21,25,()

A、30

B、31

C、32

D、34

【答案】:答案:B

解析:都為奇數。故選B。23、從1開始的第2009個奇數是()。

A、4011

B、4013

C、4015

D、4017

【答案】:答案:D

解析:因為每兩個相鄰的奇數均相差2,而第2009個奇數是第1個奇數1之后的第2008個奇數,那么第2009個奇數應該是1+2008×2=4017。故選D。24、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。25、21,59,1117,2325,(),9541

A、3129

B、4733

C、6833

D、8233

【答案】:答案:B

解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。26、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。27、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。28、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:數位數列,各項首位數字“1,2,3,4,5,(6)”構成等差數列,其余數字“2,3,5,7,11,(13)”構成質數數列。因此,未知項為613。故選A。29、某果品公司計劃安排6輛汽車運載A、B、C三種水果共32噸進入某市銷售,要求每輛車只裝同一種水果且必須裝滿,根據下表提供的信息,則有()種安排車輛方案。

A、1

B、2

C、3

D、4

【答案】:答案:A

解析:設運送三種水果的車輛數分別為X、Y、Z,根據題意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z為車輛數都為正整數,②中6X和4Z都為偶數,所以Y必然是偶數,且Y≤4,Y=2或4。當Y=4時X=2、Z=0不符合題意,故本題解只有一組X=3、Y=2、Z=1。故選A。30、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。31、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。32、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。33、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。34、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()

A、7個

B、8個

C、9個

D、10個

【答案】:答案:C

解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。35、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余幾?()

A、1

B、2

C、3

D、4

【答案】:答案:D

解析:a除以5余1,假設a=6;b除以5余4,假設b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故選D。36、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。37、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。38、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。39、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相連兩項相減:1,2,5,();再減一次:1,3,9,27;()=14;21+14=35。故選B。40、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。41、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()

A、7個

B、8個

C、9個

D、10個

【答案】:答案:C

解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。42、4,5,9,18,34,()

A、59

B、37

C、46

D、48

【答案】:答案:A

解析:該數列的后項減去前項得到一個平方數列,故空缺處應為34+25=59。故選A。43、2.1,2.2,4.1,4.4,16.1,()

A、32.4

B、16.4

C、32.16

D、16.16

【答案】:答案:D

解析:偶數項的小數部分和整數部分相同。故選D。44、2,4,12,32,88,()

A、140

B、180

C、220

D、240

【答案】:答案:D

解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三項=2×(第一項+第二項),即所填數字為2×(88+32)=240。故選D。45、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。46、1,10,3,5,()

A、4

B、9

C、13

D、15

【答案】:答案:C

解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。47、商店購入一百多件A款服裝,其單件進價為整數元,總進價為1萬元,已知單件B款服裝的定價為其進價的1.6倍,其進價為A款服裝的75%,銷售每件B款服裝的利潤為A款服裝的一半,某日商店以定價銷售A款服裝的總銷售額超過2500元,問當天至少銷售了多少件A款服裝?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服裝有125件,進價為80元,B款服裝進價為80×0.75=60(元),B款服裝定價為60×1.6=96(元),利潤為96-60=36(元),A款服裝利潤為36×2=72(元),所以A款服裝售價為80+72=152(元)。銷售數量至少為2500÷152=16.4,取整為17件。故選C。48、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。解析:設每個小長方形的長為x厘米、寬為y厘米,由題意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大長方形的面積為12×8×5=480平方厘米。故選C。49、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。50、在某企業,40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。51、四人年齡為相鄰的自然數列且最年長者不超過30歲,四人年齡之乘積能被2700整除且不能被81整除。則四人中最年長者多少歲?()

A、30

B、29

C、28

D、27

【答案】:答案:C

解析:結合最年長者,優先從選項最大值代入:A選項:30×29×28×27,尾數只有一個0,不能被2700整除,排除;B選項:29×28×27×26,尾數不為0,不能被2700整除,排除;C選項:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正確。故選C。52、當含鹽30%的60千克鹽水蒸發為含鹽40%的鹽水時,鹽水重量為多少千克?()

A、45

B、50

C、55

D、60

【答案】:答案:A

解析:設蒸發后鹽水質量為x千克,由鹽水中鹽的質量不變可得,60×30%=40%x,解得x=45。故選A。53、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。54、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。55、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。56、有一支參加閱兵的隊伍正在進行訓練,這支隊伍的人數是5的倍數且不少于1000人,如果按每橫排4人編隊,最后少3人,如果按每橫排3人編隊,最后少2人;如果按每橫排2人編隊,最后少1人。請問,這支隊伍最少有多少人?()

A、1045

B、1125

C、1235

D、1345

【答案】:答案:A

解析:問最少,由小到大代入選項:代入A選項,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,滿足題意。故選A。57、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。58、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比為-2的等比數列。故選D。59、團體操表演中,編號為1~100的學生按順序排成一列縱隊,編號為1的學生拿著紅、黃、藍三種顏色的旗幟,以后每隔2個學生有1人拿紅旗,每隔3個學生有1人拿藍旗,每隔6個學生有1人拿黃旗。問所有學生中有多少人拿兩種顏色以上的旗幟?()

A、13

B、14

C、15

D、16

【答案】:答案:B

解析:每隔n個人意為每(n+1)個人,則拿紅、藍、黃旗的周期分別為3、4、7。除編號為1的學生外還剩99人,同時拿紅、藍旗的編號為12(3和4的公倍數)的倍數,99÷12=8.25,有8人;同理,同時拿紅、黃旗的編號為21(3和7的公倍數)的倍數,99÷21=4.7,有4人;同時拿藍、黃旗的編號為28(4和7的公倍數)的倍數,99÷28=3.5,有3人;同時拿紅藍黃旗的編號為84(3、4和7的公倍數)的倍數,99÷84=1.1,有1人。拿兩種顏色以上的旗幟共有8+4+3+1-2×1=14(人)。故選B。60、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。61、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。62、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。63、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。64、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。65、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。66、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。67、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()

A、5

B、6

C、7

D、8

【答案】:答案:D

解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。68、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。69、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()

A、黃

B、紅

C、綠

D、紫

【答案】:答案:A

解析:根據“按照紅、黃、綠、紫”可知,四個顏色為一個周期,則58÷4=14...2,故第58面旗是14個周期后的第二面,即為黃色。故選A。70、78,9,64,17,32,19,()

A、18

B、20

C、22

D、26

【答案】:答案:A

解析:兩兩相加=>87、73、81、49、51、37=>每項除以3,則余數為=>0、1、0、1、0、1。故選A。71、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。72、2,6,30,210,2310,()

A、30160

B、30030

C、40300

D、32160

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數除以前一個數得3,5,7,11,為一個質數數列,即所填數字為2310×13=30030。故選B。73、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。74、-13,19,58,106,165,()

A、189

B、198

C、232

D、237

【答案】:答案:D

解析:二級等差。(即作差2次后,所得相同)。故選D。75、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一項-前一項=212,即所填數字為536+212=738。故選B。76、在列車平行軌道上,甲、乙兩列火車相對開來。甲列火車長236米,每秒行38米;乙列火車長275米,已知這兩列火車錯車開過用了7秒鐘,則乙列火車按這個速度通過長為2000米的隧道需要()秒鐘。

A、65

B、70

C、75

D、80

【答案】:答案:A

解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,選A。77、2,11,32,()

A、56

B、42

C、71

D、134

【答案】:答案:C

解析:觀察題干數列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括號處應為71。故選C。78、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。79、某商店有兩個進價不同的計算器都賣了64元,其中一個贏利60%,另一個虧本20%。在這次買賣中,這家商店()。

A、不賠不賺

B、賺了8元

C、賠了8元

D、賺了32元

【答案】:答案:B

解析:根據題意可知,64÷(1+60%)=40,64÷(1-20%)=80,即兩個計算器的成本分別為40元、80元。64+64-40-80=8元,即賺了8元。故選B。80、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。81、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:公比為6的等比數列。故選A。82、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。83、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。84、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。85、7,7,16,42,107,()

A、274

B、173

C、327

D、231

【答案】:答案:D

解析:做一次差后得到數列:13-1,23+1,33-1,43+1,53-1。故選D。86、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。87、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。88、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。

A、14

B、16

C、18

D、20

【答案】:答案:B

解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。89、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。90、1,10,2,(),3,8,4,7,5,6

A、6

B、7

C、8

D、9

【答案】:答案:D

解析:間隔組合數列,奇數項1、2、3、4、5和偶數項10、(9)、8、7、6都為等差數列。故選D。91、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。92、有一1500米的環形跑道,甲,乙二人同時同地出發,若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。

A、330米/分鐘

B、360米/分鐘

C、375米/分鐘

D、390米/分鐘

【答案】:答案:B

解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。93、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。94、甲和乙兩個公司2014年的營業額相同。2015年乙公司受店鋪改造工程影響,營業額比上年下降300萬元。而甲公司則引入電商業務,營業額比上年增長600萬元,正好是乙公司2015年營業額的3倍。則2014年兩家公司的營業額之和為多少萬元?()

A.900

B.1200

C.1500

D.1800

【答案】:答案:C

解析:設2014年兩家公司營業額為x萬元,由題意可得萬元,則2014年兩家公司營業額為故正確答案為C。95、1,8,9,4,(),1/6

A、3

B、2

C、1

D、1/3

【答案】:答案:C

解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故選C。96、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。97、鐘表有一個時針和一個分針,分針每一小時轉360度,時針每12小時轉360度,則24小時內時針和分針成直角共多少次:

A.28

B.36

C.44

D.48

【答案】:答案:C

解析:一般情況,1小時內會出現2次垂直情況,但是3點、9點、15點、21點這4個特殊時間,只有1次垂直,所以有。故正確答案為C。98、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。99、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。100、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。101、13×99+135×999+1357×9999的值是()。

A、13507495

B、13574795

C、13704675

D、13704795

【答案】:答案:D

解析:原式=13×(100-1)+135×(1000-1)+1357×(10000-1)=1300+135000+13570000-(13+135+1357)=13704795。故選D。102、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。103、辦公室小李發現寫字臺上的臺歷很久沒有翻了,就一次翻了7張,這些臺歷的日期數加起來恰好是77,請問這一天是幾號?()

A、14

B、15

C、16

D、17

【答案】:答案:B

解析:翻過去的7天的日期是公差為1的等差數列,和是77,根據等差數列求和公式,可知中位數=77÷7=11,7天中位數是第4天即第4天為11號。第七天是11+(7-4)×1=14號,可知今天是15號。故選B。104、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。105、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。106、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。107、大年三十彩燈懸,彩燈齊明光燦燦,三三數時能數盡,五五數時剩一盞,七七數時剛剛好,八八數時還缺三,請你自己算一算,彩燈至少有多少盞?()

A、21

B、27

C、36

D、42

【答案】:答案:A

解析:由三三數時能數盡、七七數時剛剛好可知,彩燈的數量能同時被3和7整除,排除B、C。又由五五數時剩一盞可知,彩燈的數量除以5余1,排除D。故選A。108、3,6,11,(),27

A、15

B、18

C、19

D、24

【答案】:答案:B

解析:相鄰兩項后一項減前一項,6-3=3,11-6=5,18-11=7,27-18=9,構成公差為2的等差數列。即所填數字為11+7=18,27-9=18。故選B。109、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。110、某小區有40%的住戶訂閱日報,有15%的住戶同時訂閱日報和時報,至少有75%的住戶至少訂閱兩種報紙中的一種,問訂閱時報的比例至少為多少?()

A、35%

B、50%

C、55%

D、60%

【答案】:答案:B

解析:設訂閱時報的住戶為x,至少訂閱一種報紙的人數為40%+x-15%。由至少75%的住戶至少訂閱兩種報紙中的一種得,40%+x-15%≥75%,解得x≥50%。故選B。111、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故選A。112、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差數列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以發現:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。113、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。

A、10萬元/個

B、11萬元/個

C、12萬元/個

D、13萬元/個

【答案】:答案:C

解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。114、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解數列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一項的兩個因子之和分別為3、5、7、9、11、()、15,構成公差為2的等差數列。由此可知,空缺項的兩個因子的和為13,結合選項,只有B項的42=6×7分解后兩個因子的和為13。故選B。115、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。116、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。117、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。118、有一只青蛙在井底,每天上爬10米,又下滑6米,這口井深20米,這只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距離井口20-4=16米;第二天爬了4+(10-6)=8米,距離井口20-8=12米;第三天爬了8+(10-6)=12米,距離井口20-12=8米<10米;第四天青蛙可以直接爬出井口。這只青蛙爬出井口至少要4天。故選C。119、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。120、4/5,16/17,16/13,64/37,()

A、64/25

B、64/21

C、35/26

D、75/23

【答案】:答案:A

解析:已知數列可轉化為:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比為2的等比數列,分母10,17,26,37,()構成二級等差數列。故第五項的分子應是128,分母是50,約分后為64/25。故選A。121、3,4,10,33,136,()

A、685

B、424

C、314

D、149

【答案】:答案:A

解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。122、某機場一條自行人行道長42m,運行速度0.75m/s。小王在自行人行道的起始點將一件包裹通過自動人行道傳遞給位于終點位置的小明。小明為了節省時間,在包裹開始傳遞時,沿自行人行道逆行領取包裹并返回。假設小明的步行速度是1m/s,則小明拿著包裹并回到自行人行道終點共需要的時間是()。

A、4秒

B、42秒

C、48秒

D、56秒

【答案】:答案:C

解析:小明沿自行人行道走,取到包裹用時為42/(1+0.75)=24秒,小明運動距離24×1=24米,返回時間=24/1=24秒,共用時24+24=48秒。故選C。123、3,2,2,5,17,()

A、24

B、36

C、44

D、56

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得-1,0,3,12,再次作差得1,3,9,構成公比為3的等比數列,即所填數字為9×3+12+17=56。故選D。124、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。125、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續的奇數列,另一部分2、3、4、5是連續的自然數,即所填數字為93+6=735。故選D。126、兩個人帶著寵物狗玩游戲,兩人相距200米,并以相同速度1米/秒相向而行,與此同時,寵物狗以3米/秒的速度,在兩人之間折返跑,當兩人相距60米時,那么寵物狗總共跑的距離為?()

A、270米

B、240米

C、210米

D、300米

【答案】:答案:C

解析:根據狗與兩人同時出發可知,狗與兩人的運動時間相同。兩人從相距200米,相向運動至60米,共行駛200-60=140(米),設兩人運動時間為t,有140=(1+1)×t,解得t=70秒。則狗總共跑的距離為3×70=210(米)。故選C。127、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。128、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。129、某出版社新招了10名英文、法文和日文方向的外文編輯,其中既會英文又會日文的小李是唯一掌握一種以上外語的人。在這10人中,會法文的比會英文的多4人,是會日文人數的兩倍。問只會英文的有幾人?()

A、2

B、0

C、3

D、1

【答案】:答案:D

解析:設會日文的有x人,則會法文的有2x人,會英文的有(2x-4)人,由于小李既會英文也會日文,被統計兩次,故10人統計了11人次。根據人次總數,得方程11=x+2x+2x-4,解得x=3,則會英文的人為2x-4=2(人),因小李既會英文又會日文,所以只會英文的只有2-1=1(人),故選D。130、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。131、2,14,84,420,1680,()

A、2400

B、3360

C、4210

D、5040

【答案】:答案:D

解析:兩兩做商得到7,6,5,4,按此規律下一項為3,所以所求項為1680×3=5040。故選D。132、以正方形的4個頂點和中心點中的任意三點為頂點可以構成幾種面積不等的三角形?()

A、1

B、2

C、3

D、4

【答案】:答案:B

解析:若3個點都從正方形的4個頂點中取,則得到的三角形面積是正方形面積的一半:若3個點中有一個是中心點,其他2個是正方形的頂點,則得到的三角形面積是正方形面積的四分之一。因此,可以構成2種面積不等的蘭角形。故選B。133、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。134、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。135、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。

A、800噸

B、1080噸

C、1360噸

D、1640噸

【答案】:答案:D

解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。136、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收??;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。137、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。138、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。139、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。140、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。141、某農場有36臺收割機,要收割完所有的麥子需要14天時間。現收割了7天后增加4臺收割機,并通過技術改造使每臺機器的效率提升,問收割完所有的麥子還需要幾天。

A.3

B.4

C.5

D.6

【答案】:答案:D

解析:方法一:賦值法,賦值每臺收割機每天的工作效率為1,則工作總量為36×14,剩下的36×7由36+4=40臺收割機完成,技術改造后每臺收割機效率為,故剩下需要的時間為。方法二:比例法。由題意,原有收割機36臺,增加4臺后變為40臺,提高效率5%后相當于原先40×(1+5%)=42臺收割機的工作效率。效率比為6∶7,故所有時間比為7∶6,還需6天即可完成。故正確答案為D。142、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。143、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。144、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論