初中數學教學設計內容錦集四篇_第1頁
初中數學教學設計內容錦集四篇_第2頁
初中數學教學設計內容錦集四篇_第3頁
初中數學教學設計內容錦集四篇_第4頁
初中數學教學設計內容錦集四篇_第5頁
已閱讀5頁,還剩3頁未讀, 繼續免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初中數學教學設計內容錦集四篇教學設計】

作為一位杰出的老師,常常要根據教學需要編寫教案,教案是保證教學取得成功、提高教學質量的基本條件。那么大家知道正規的教案是怎么寫的嗎。以下是我收集整理的初中數學教學設計內容錦集四篇,僅供參考,希望能夠幫助到大家。

【篇一】初中數學教學設計內容

一、教材內容及設置依據

【教材內容】本節教材的主要內容是通過對有理數加法、減法的運算的回顧,學習包括分數和小數的有理數的加減混合運算,理解其方法;應用有理數的加減混合運算,解決實際問題。

【設置依據】教材內容的確定主要根據知識的社會作用性、教育性原則(對培養學生的數學思維、數學能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應日常生活準備條件)、可接受性原則(即考慮學生的認識水平、接受能力、生理心理特征,又要著眼于學生的不斷發展);還要與現實生活、科技發展相適應,逐步深透現代教學思想。

二、教材的地位和作用

本節內容是在學習了有理數的加法、有理數的減法的基礎上學習的,是前面知識的延伸和加強,同時又是后面所要學習的有理數的乘法、除法及有理數的混合運算的基礎,

特別是減法可以轉化為加法為后面的除法可以轉化為乘法的學習提供了

類比依據。也為后面學習代數式的合并同類項及有關的恒等變形奠定了基礎,因此具有承上啟下的重要作用。

三、對重點、難點的處理

【對重點的處理】本節的重點是有理數加減混合運算的方法及在實際生活中的應用。為了突出重點,教師應盡量從實際問題引入、應盡可能的在課堂上創設具體教學情境,注重使學生在具體情境中體會運算的方法。同時我們也可以根據學生的接受情況和每節課的具體情況,盡可能的把每節課的“課堂練習”和“習題”的內容劃分成不同的板塊,如:

1、知識鞏固型

2、實際應用型

3、方法多變型

4、知識拓展型等。

【對難點的處理】對于難點的處理,因為新教材“強調要給學生足夠的空間和時間”,因此教學時我們應盡量從學生已有的生活經驗和已有的知識經驗出發,或用“已知”去解決“未知”的思想引導學生,鼓勵學生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(不出現代數和的定義,只是讓學生理解有理數的加減運算可以統一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學生通過具體情境對“代數和”加以體會)

四、關于教學方法的選用

根據本節課的內容和學生的實際水平,本節課可采用的方法:

1、情境體驗:通過教師創設貼近學生生活實際的教學情境,讓學生融會到課堂中去,產生共鳴,激發興趣,鼓勵學生觀察、分析、探索,加深其對本節內容的理解,培養學生解決問題的能力。

2、引導發現法:它符合辯證唯物主義中內因與外因相互作用的觀點,符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則。引導發現法的關鍵是通過教師的引導啟發,充分調動學生學習的主動性。

3、小組合作、探究討論:通過合作討論,使學生形成一個“學習共同體”,在這個共同體內相互交流、相互溝通、相互啟發、相互補充,分享彼此的思考、經驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學生體會到集體的力量,形成合作的意識,產生合作的愿望。

五、關于學法的指導

“授人以魚,不如授人以漁”,在教給學生知識的同時,要教給他們好的學習方法,讓他們“會學習”在本節課的教學中,在提出問題后,要鼓勵學生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養了思維能力。同時意識到:數學是生活實際中的數學、大自然中的數學,萌生了用數學解決實際問題的意識、愿望。

六、課時安排:1課時

教學程序:

一、復習鋪墊:

首先利用多媒體出示一組有關有理數的加法、減法的題目,讓學生進行速算比賽,看誰做的又對又快。

1、45+(-23)2、9-(-5)

3、-28-(-37)4、(-13)+0

5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

從四排學生中個推選一名學生代表板演6、7、8、題。

通過比賽的方式,符合學生的心理特點,迎合了學生好勝的心理,激起了學生學習的內在動力,激發了學習的興趣。

然后教師與學生一起對題目進行評判,對優勝的學生進行表揚,對其他學生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關鍵要有信心,要有高昂的斗志。通過練習,學生已在不知不覺中復習了有理數的加法、減法法則,特別是減法法則,加深了印象,這符合教學論中的鞏固性原則,為后面學習有理數的加減混合運算奠定了基礎。

二、新知探索:

1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作

上升4.5千米+4.5千米

下降3.2千米-3.2千米

上升1.1千米+1.1千米

下降1.4千米-1.4千米

此時飛機比起飛點高了多少米?

讓學生分組探究討論,讓學生發表自己的見解,不難得出兩種算法:

①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4)=1.3+1.1-1.4

=2.4+(-1.4)=2.4-1.4

=1千米=1千米

教師隨之提出問題:比較以上兩種算法,你發現了什么?通過學生的合作討論、教師的引導、規納、總結可得出:加減法混合運算可以統一成加法;加法運算可以寫成省略括號及前面加號的形式。使學生在解決問題的過程中體會到“代數和“的含義。這里不要求出現“代數和”的名稱。

【篇二】初中數學教學設計內容

一、教學目的:

1、理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;

2、在菱形的判定方法的探索與綜合應用中,培養學生的觀察能力、動手能力及邏輯思維能力.

二、重點、難點

1、教學重點:菱形的兩個判定方法.

2、教學難點:判定方法的證明方法及運用.

三、例題的意圖分析

本節課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.

四、課堂引入

1、復習

(1)菱形的定義:一組鄰邊相等的平行四邊形;

(2)菱形的性質1:菱形的四條邊都相等;

性質2:菱形的對角線互相平分,并且每條對角線平分一組對角;

(3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)

2、【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?

3、【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什么時候變成菱形?

通過演示,容易得到:

菱形判定方法1對角線互相垂直的平行四邊形是菱形.

注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.

通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:

菱形判定方法2四邊都相等的四邊形是菱形.

五、例習題分析

例1(教材P109的例3)略

例2(補充)已知:如圖ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.

求證:四邊形AFCE是菱形.

證明:∵四邊形ABCD是平行四邊形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四邊形AFCE是平行四邊形.

又EF⊥AC,

∴AFCE是菱形(對角線互相垂直的平行四邊形是菱形).

※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.

求證:四邊形CEHF為菱形.

略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.

六、隨堂練習

1、填空:

(1)對角線互相平分的四邊形是;

(2)對角線互相垂直平分的四邊形是________;

(3)對角線相等且互相平分的四邊形是________;

(4)兩組對邊分別平行,且對角線的四邊形是菱形.

2、畫一個菱形,使它的兩條對角線長分別為6cm、8cm.

3、如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

七、課后練習

1、下列條件中,能判定四邊形是菱形的是

(A)兩條對角線相等(B)兩條對角線互相垂直

(C)兩條對角線相等且互相垂直(D)兩條對角線互相垂直平分

2、已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.

3、做一做:

設計一個由菱形組成的花邊圖案.花邊的長為15cm,寬為4cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.

【篇三】初中數學教學設計內容

一、教學目標

知識與技能:使學生了解正數與負數是從實際需要中產生的;

過程與方法:使學生理解正數與負數的概念,并會判斷一個數是正數還是負數,初步會用正負數表示具有相反意義的量;

情感與態度:在負數概念的形成過程中,培養學生的觀察、歸納與概括的能力

二、教學重點和難點

負數的引入和意義

三、教學過程

創設情景,生活實例引入,觀察猜想,合作探究

(一)、從學生原有的認知結構提出問題

大家知道,數學與數是分不開的,它是一門研究數的學問現在我們一起來回憶一下,小學里已經學過哪些類型的數?

學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的。

為了表示一個人、兩只手、……,我們用到整數1,2,……

為了表示半小時、四元八角七分、……,我們需用到分數1/2和小數4.87、……

為了表示“沒有人”、“沒有羊”、……我們要用到0。

但在實際生活中,還有許多量不能用上述所說的自然數,零或分數、小數表示。

(二)、師生共同研究形成正負數概念

某市某一天的最高溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數,都記作5℃,就不能把它們區別清楚。

它們是具有相反意義的兩個量。

現實生活中,像這樣的相反意義的量還有很多。

例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的。

又如,某倉庫昨天運進貨物噸,今天運出貨物噸,“運進”和“運出”,其意義是相反的。

同學們能舉例子嗎?

學生回答后,教師提出:怎樣區別相反意義的量才好呢?

現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量筒明地表示出來了。

讓學生用同樣的方法表示出前面例子中具有相反意義的量:

高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

運進綱物噸,記作+;運出貨物噸,記作—。

教師講解:什么叫做正數?什么叫做負數。

強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號

(三)、運用舉例變式練習

例1所有的正數組成正數集合,所有的負數組成負數集合把下列各數中的正數和負數分別填在表示正數集合和負數集合的圈里:

—11,4,8,+73,—2,7,,,—8,12,—;

正數集合負數集合

此例由學生口答,教師板書,注意加上省略號,說明這是因為正(負)數集合中包含所有正(負)數,而我們這里只填了其中一部分。然后,指出不僅可以用圈表示集合,也可以用大括號表示集合

課堂練習

任意寫出6個正數與6個負數,并分別把它們填入相應的大括號里:

正數集合:{…},

負數集合:{…}

四、課堂小結

由于實際生活中存著許多具有相反意義的量,因此產生了正數與負數正數是大于0的數,負數就是在正數前面加上“—”號的數0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃

五、作業布置

1、北京一月份的日平均氣溫大約是零下3℃,用負數表示這個溫度

2、在小學地理圖冊的世界地形圖上,可以看到亞洲西部地中海旁有一個死海湖,圖中標著—392,這表明死海的湖面與海平面相比的高度是怎樣的?

3、在下列各數中,哪些是正數?哪些是負數?

—16,0,004,+,—,,25,8,—3,6,—4,9651,—0,1。

4、如果—50元表示支出50元,那么+200元表示什么?

5、河道中的水位比正常水位低0。2米記作—0.2米,那么比正常水位溫0.1米記作什?

6、如果自行車車條的長度比標準長度長2毫米記作+2毫米,那么比標準長度短3毫米記作么?

7、一物體可以左右移動,設向右為正,問:

(1)向左移動12米應記作什么?

(2)“記作8米”表明什么?

【篇四】初中數學教學設計內容

教學目標:

(1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

(2)注重學生參與,聯系實際,豐富學生的感性認識,培養學生的良好的學習習慣

重點難點:

能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

教學過程:

一、試一試

1、設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

2、x的值是否可以任意取?有限定范圍嗎?

3、我們發現,當AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數,試寫出這個函數的關系式,

對于1.可讓學生根據表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數據的變化情況,提出問題:(1)從所填表格中,你能發現什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。對于2,可讓學生分組討論、交流,然后各組派代表發表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0<x<10。對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函數關系式.

二、提出問題

某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經過市場調查,發現這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?在這個問題中,可提出如下問題供學生思考并回答:

1、商品的利潤與售價、進價以及銷售量之間有什么關系?

[利潤=(售價-進價)×銷售量]

2、如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3、若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

[(10-8-x);(100+100x)]

4、x的值是否可以任意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論