




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州市吳中學區重點達標名校2024年中考數學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.242.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣33.為了支援地震災區同學,某校開展捐書活動,九(1)班40名同學積極參與.現將捐書數量繪制成頻數分布直方圖如圖所示,則捐書數量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.44.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.25.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD6.下列各數:π,sin30°,﹣,其中無理數的個數是()A.1個 B.2個 C.3個 D.4個7.二次函數y=ax2+c的圖象如圖所示,正比例函數y=ax與反比例函數y=在同一坐標系中的圖象可能是()A. B. C. D.8.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.9.從標號分別為1,2,3,4,5的5張卡片中隨機抽取1張,下列事件中不可能事件是()A.標號是2 B.標號小于6 C.標號為6 D.標號為偶數10.二次函數y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數y=與一次函數y=bx﹣c在同一坐標系內的圖象大致是()A. B. C. D.11.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數為()A.100° B.110° C.115° D.120°12.如圖,,則的度數為()A.115° B.110° C.105° D.65°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.14.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.15.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.16.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為_____.17.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內部五個小直角三角形的周長為_____.18.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數為__度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點E,F,求∠CEF的度數.20.(6分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.21.(6分)解不等式:﹣≤122.(8分)某鄉鎮實施產業扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節,已知該蜜柚的成本價為8元/千克,投入市場銷售時,調查市場行情,發現該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數關系如圖所示.(1)求與的函數關系式,并寫出的取值范圍;(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?(3)某農戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.23.(8分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;24.(10分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若m為非負整數,且該方程的根都是無理數,求m的值.25.(10分)某區教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統計圖中A級所在的扇形的圓心角度數是;(3)請把條形統計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.26.(12分)一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.甲,乙兩公司單獨完成此項工程,各需多少天?若讓一個公司單獨完成這項工程,哪個公司的施工費較少?27.(12分)黃石市在創建國家級文明衛生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經市場調查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數量不少于B種樹木數量的3倍.學校與中標公司簽訂的合同中規定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
解:如圖,設對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質.2、B【解析】
本題可對方程進行因式分解,也可把選項中的數代入驗證是否滿足方程.【詳解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故選:B.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的特點靈活選用合適的方法.本題運用的是因式分解法.3、B【解析】∵在5.5~6.5組別的頻數是8,總數是40,∴=0.1.故選B.4、A【解析】試題分析:先根據折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.5、D【解析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質;全等三角形的判定.6、B【解析】
根據無理數的三種形式:①開方開不盡的數,②無限不循環小數,③含有π的數,找出無理數的個數即可.【詳解】sin30°=,=3,故無理數有π,-,故選:B.【點睛】本題考查了無理數的知識,解答本題的關鍵是掌握無理數的三種形式:①開方開不盡的數,②無限不循環小數,③含有π的數.7、C【解析】
根據二次函數圖像位置確定a0,c0,即可確定正比例函數和反比例函數圖像位置.【詳解】解:由二次函數的圖像可知a0,c0,∴正比例函數過二四象限,反比例函數過一三象限.故選C.【點睛】本題考查了函數圖像的性質,屬于簡單題,熟悉系數與函數圖像的關系是解題關鍵.8、A【解析】【分析】根據銳角三角函數的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點睛】本題考查了銳角三角函數的定義,能熟記銳角三角函數的定義的內容是解此題的關鍵.9、C【解析】
利用隨機事件以及必然事件和不可能事件的定義依次分析即可解答.【詳解】選項A、標號是2是隨機事件;選項B、該卡標號小于6是必然事件;選項C、標號為6是不可能事件;選項D、該卡標號是偶數是隨機事件;故選C.【點睛】本題考查了隨機事件以及必然事件和不可能事件的定義,正確把握相關定義是解題關鍵.10、C【解析】
根據二次函數的圖象找出a、b、c的正負,再結合反比例函數、一次函數系數與圖象的關系即可得出結論.【詳解】解:觀察二次函數圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數中k=﹣a<1,∴反比例函數圖象在第二、四象限內;∵一次函數y=bx﹣c中,b<1,﹣c<1,∴一次函數圖象經過第二、三、四象限.故選C.【點睛】本題考查了二次函數的圖象、反比例函數的圖象以及一次函數的圖象,解題的關鍵是根據二次函數的圖象找出a、b、c的正負.本題屬于基礎題,難度不大,解決該題型題目時,根據二次函數圖象找出a、b、c的正負,再結合反比例函數、一次函數系數與圖象的關系即可得出結論.11、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內接四邊形的性質是關鍵.12、A【解析】
根據對頂角相等求出∠CFB=65°,然后根據CD∥EB,判斷出∠B=115°.【詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【點睛】本題考查了平行線的性質,知道“兩直線平行,同旁內角互補”是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、120【解析】
首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點睛】本題考查基本作圖、平行四邊形的性質等知識,解題的關鍵是熟練掌握基本知識14、(或)【解析】
將拋物線化為頂點式,再按照“左加右減,上加下減”的規律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.15、【解析】
根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.16、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉的性質可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉的性質以及等邊三角形的判定與性質.此題比較簡單,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.17、1【解析】分析:由圖形可知,內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質,需要注意的是:平移前后圖形的大小、形狀都不改變.18、1.【解析】
根據一副直角三角板的各個角的度數,結合三角形內角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點睛】本題主要考查三角形的內角和定理以及對頂角的性質,掌握三角形的內角和等于180°,是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據切線的性質和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據等角的余角相等即可得出結論;(2)根據三角形的外角的性質證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.20、(1)1;(2)【解析】(1)由勾股定理求AB,設⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據CG平分直角∠ACB可知△PCG為等腰直角三角形,設PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.21、x≥.【解析】
根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得.【詳解】2(2﹣3x)﹣3(x﹣1)≤6,4﹣6x﹣3x+3≤6,﹣6x﹣3x≤6﹣4﹣3,﹣9x≤﹣1,x≥.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.22、(1)();(2)定價為19元時,利潤最大,最大利潤是1210元.(3)不能銷售完這批蜜柚.【解析】【分析】(1)根據圖象利用待定系數法可求得函數解析式,再根據蜜柚銷售不會虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據利潤=每千克的利潤×銷售量,可得關于x的二次函數,利用二次函數的性質即可求得;(3)先計算出每天的銷量,然后計算出40天銷售總量,進行對比即可得.【詳解】(1)設,將點(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會虧本,∴,又,∴,∴,∴;(2)設利潤為元,則==,∴當時,最大為1210,∴定價為19元時,利潤最大,最大利潤是1210元;(3)當時,,110×40=4400<4800,∴不能銷售完這批蜜柚.【點睛】本題考查了一次函數的應用、二次函數的應用,弄清題意,找出數量間的關系列出函數解析式是解題的關鍵.23、1.【解析】分析:本題涉及乘方、負指數冪、二次根式化簡、絕對值和特殊角的三角函數5個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.詳解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.點睛:本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.24、(1)m<2;(2)m=1.【解析】
(1)利用方程有兩個不相等的實數根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據根的情況確定滿足條件的m的值.【詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個不相等的實數根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負整數,∴m=3或m=1,當m=3時,原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當m=1時,原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b2-4ac有如下關系:當△>3時,方程有兩個不相等的實數根;當△=3時,方程有兩個相等的實數根;當△<3時,方程無實數根.25、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】
解:(1)根據題意得:
D級的學生人數占全班人數的百分比是:
1-20%-46%-24%=10%;
(2)A級所在的扇形的圓心角度數是:20%×360°=72°;
(3)∵A等人數為10人,所占比例為20%,
∴抽查的學生數=10÷20%=50(人),
∴D級的學生人數是50×10%=5(人),
補圖如下:
(4)根據題意得:
體育測試中A級和B級的學生人數之和是:500×(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術市場數字化交易平臺在藝術品市場風險預測與防范中的應用報告
- 農藥生產危險品管理軟件應用考核試卷
- 癌癥患者化療期間的用藥指導
- 京東用戶畫像與精準營銷策略
- 城市交通系統運營成本優化研究報告
- 互聯網廣告行業深度分析與策略規劃報告
- 健康主題劇本殺行業運營模式探討
- 健康廚房場景解決方案在餐飲行業的創新實踐
- 教育學研究:中小學中藥藥理實驗教學策略
- 福州文科數學試卷
- 肺曲霉菌病治療講課件
- 頂端分生組織穩態調控-洞察闡釋
- 2025年農業經濟學考試試題及答案
- 2025至2030年中國硫化橡膠制避孕套行業供需態勢分析及投資機會分析報告
- 2025至2030中國海洋涂料行業市場發展分析及發展前景與投融資報告
- 集中供熱工程項目可行性研究報告
- 2025年重慶市中考地理試題 (解析版)
- (2025)學習《中華人民共和國監察法》知識試題庫(附含答案)
- 浙江學考語文試題及答案
- JG/T 313-2014額定電壓0.6/1kV及以下金屬護套無機礦物絕緣電纜及終端
- 2025年保健按摩師資格技術及理論知識考試題庫(附含答案)
評論
0/150
提交評論