江蘇省連云港2024屆中考數(shù)學對點突破模擬試卷含解析_第1頁
江蘇省連云港2024屆中考數(shù)學對點突破模擬試卷含解析_第2頁
江蘇省連云港2024屆中考數(shù)學對點突破模擬試卷含解析_第3頁
江蘇省連云港2024屆中考數(shù)學對點突破模擬試卷含解析_第4頁
江蘇省連云港2024屆中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省連云港2024屆中考數(shù)學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-12.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.3.如圖,兩個一次函數(shù)圖象的交點坐標為,則關于x,y的方程組的解為()A. B. C. D.4.上體育課時,小明5次投擲實心球的成績如下表所示,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.05.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體6.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學記數(shù)法表示應為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×1037.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個方程為“美好”方程,如果一個一元二次方程既是“和諧”方程又是“美好”方程,則下列結論正確的是()A.方有兩個相等的實數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于08.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.109.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°10.如圖是某幾何體的三視圖及相關數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π二、填空題(共7小題,每小題3分,滿分21分)11.如圖,平行線AB、CD被直線EF所截,若∠2=130°,則∠1=_____.12.如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內的水量y(單位:升)與時間x(單位:分)之間的部分關系.那么,從關閉進水管起分鐘該容器內的水恰好放完.13.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為_____.14.對于任意實數(shù)a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據(jù)上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.15.二次函數(shù)y=(a-1)x2-x+a2-1

的圖象經(jīng)過原點,則a的值為______.16.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長____cm.17.如圖,中,,,,將繞點逆時針旋轉至,使得點恰好落在上,與交于點,則的面積為_________.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.19.(5分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當AC=5,BC=6時,求DF的長.20.(8分)如圖在由邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中,已知點A,B,C,D均為網(wǎng)格線的交點在網(wǎng)格中將△ABC繞點D順時針旋轉90°畫出旋轉后的圖形△A1B1C1;在網(wǎng)格中將△ABC放大2倍得到△DEF,使A與D為對應點.21.(10分)如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.(1)求證:PM∥AD;(2)若∠BAP=2∠M,求證:PA是⊙O的切線;(3)若AD=6,tan∠M=,求⊙O的直徑.22.(10分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?23.(12分)為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。求文具袋和圓規(guī)的單價。學校準備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購買一個文具袋還送1個圓規(guī)。方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.①設購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.②若學校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.24.(14分)計算:27﹣(﹣2)0+|1﹣3|+2cos30°.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.2、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.3、A【解析】

根據(jù)任何一個一次函數(shù)都可以化為一個二元一次方程,再根據(jù)兩個函數(shù)交點坐標就是二元一次方程組的解可直接得到答案.【詳解】解:∵直線y1=k1x+b1與y2=k2x+b2的交點坐標為(2,4),∴二元一次方程組的解為故選A.【點睛】本題主要考查了函數(shù)解析式與圖象的關系,滿足解析式的點就在函數(shù)的圖象上,在函數(shù)的圖象上的點,就一定滿足函數(shù)解析式.函數(shù)圖象交點坐標為兩函數(shù)解析式組成的方程組的解.4、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).5、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關鍵.6、B【解析】試題分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).將13000用科學記數(shù)法表示為:1.3×1.故選B.考點:科學記數(shù)法—表示較大的數(shù)7、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項C正確;選項A、B、D都錯誤;故選C.8、C【解析】

由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.9、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.二、填空題(共7小題,每小題3分,滿分21分)11、50°【解析】

利用平行線的性質推出∠EFC=∠2=130°,再根據(jù)鄰補角的性質即可解決問題.【詳解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案為50°【點睛】本題考查平行線的性質、鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.12、8。【解析】根據(jù)函數(shù)圖象求出進水管的進水量和出水管的出水量,由工程問題的數(shù)量關系就可以求出結論:由函數(shù)圖象得:進水管每分鐘的進水量為:20÷4=5升。設出水管每分鐘的出水量為a升,由函數(shù)圖象,得,解得:。∴關閉進水管后出水管放完水的時間為:(分鐘)。13、60°【解析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°14、2【解析】【分析】根據(jù)新定義可得出關于x的一元一次不等式,解之取其中的正整數(shù)即可得出結論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點睛】本題考查一元一次不等式的整數(shù)解以及實數(shù)的運算,通過解不等式找出x<是解題的關鍵.15、-1【解析】

將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a-1)x2-x+a2-1的圖象經(jīng)過原點,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,圖象過原點,可得出x=2時,y=2.16、13【解析】試題解析:因為正方形AECF的面積為50cm2,所以因為菱形ABCD的面積為120cm2,所以所以菱形的邊長故答案為13.17、【解析】

首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關系求出CD、A′D即可解決問題.【詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,

∴∠A=60°,

∵△ABC繞點C逆時針旋轉至△A′B′C,使得點A′恰好落在AB上,

∴CA=CA′=2,∠CA′B′=∠A=60°,

∴△CAA′為等邊三角形,

∴∠ACA′=60°,

∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,

∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,

在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【點睛】本題考查了含30度的直角三角形三邊的關系,等邊三角形的判定和性質以及旋轉的性質,掌握旋轉的性質“對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等”是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】

(1)①先判斷出△AOB≌△GBC,得出點C坐標,進而用待定系數(shù)法即可得出結論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標的求法,即可得出結論;(2)同(1)②的方法,借助圖象即可得出結論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經(jīng)過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍)∴P(,);在直線OP上取一點M(3,1),∴點M的對稱點M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經(jīng)過點C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點恰好有2個,∴方程ax2﹣6ax+8a+1=1有一個正根和一個負根或一個正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質,平行線的性質,對稱的性質,解題的關鍵是求出直線和拋物線的交點坐標.19、(1)詳見解析;(2)詳見解析;(3)DF=.【解析】

(1)先判斷出AD⊥BC,即可得出結論;(2)先判斷出OD∥AC,進而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結論;(3)先求出OD,再求出CD=3,進而求出CE,AE,DE,再判斷出,即可得出結論.【詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE?AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CE?AC,∵AC=5,∴CE=,∴AE=AC-CE=5-=,在Rt△CDE中,根據(jù)勾股定理得,DE=,由(2)知,OD∥AC,∴,∴,∴DF=.【點睛】此題是圓的綜合題,主要考查了圓的性質,等腰三角形的性質,相似三角形的判斷和性質,勾股定理,判斷出△CDE∽△CAD是解本題的關鍵.20、(1)見解析(2)見解析【解析】

(1)根據(jù)旋轉變換的定義和性質求解可得;(2)根據(jù)位似變換的定義和性質求解可得.【詳解】解:(1)如圖所示,△A1B1C1即為所求;(2)如圖所示,△DEF即為所求.【點睛】本題主要考查作圖﹣位似變換與旋轉變換,解題的關鍵是掌握位似變換與旋轉變換的定義與性質.21、(1)證明見解析;(2)證明見解析;(3)1;【解析】

(1)根據(jù)平行線的判定求出即可;(2)連接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根據(jù)切線的判定得出即可;(3)設BC=x,CM=2x,根據(jù)相似三角形的性質和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根據(jù)三角形的中位線性質得出0.71x=AD=3,求出x即可.【詳解】(1)∵BD是直徑,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)連接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半徑,∴PA是⊙O的切線;(3)連接BN,則∠MBN=90°.∵tan∠M=,∴=,設BC=x,CM=2x,∵MN是⊙O直徑,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.1x,∴OM=MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中點,C是AB的中點,AD=6,∴OC=0.71x=AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半徑為1.【點睛】本題考查了圓周角定理,切線的性質和判定,相似三角形的性質和判定等知識點,能靈活運用知識點進行推理是解此題的關鍵,此題有一定的難度.22、(1)甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)他們最多可購買11棵乙種樹苗.【解析】

(1)可設甲種樹苗每棵的價格是x元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論