湖南省長沙市雨花區2022年中考四模數學試題含解析_第1頁
湖南省長沙市雨花區2022年中考四模數學試題含解析_第2頁
湖南省長沙市雨花區2022年中考四模數學試題含解析_第3頁
湖南省長沙市雨花區2022年中考四模數學試題含解析_第4頁
湖南省長沙市雨花區2022年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙市雨花區2022年中考四模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知函數,則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.32.小紅上學要經過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.3.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發沿BE→ED→DC運動到點C停止,點Q從點B出發沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤4.拒絕“餐桌浪費”,刻不容緩.節約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節省斤,這些糧食可供9萬人吃一年.“”這個數據用科學記數法表示為()A. B. C. D..5.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.146.關于x的方程x2﹣3x+k=0的一個根是2,則常數k的值為()A.1 B.2 C.﹣1 D.﹣27.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.8.的算術平方根是()A.4 B.±4 C.2 D.±29.如果一次函數y=kx+b(k、b是常數,k≠0)的圖象經過第一、二、四象限,那么k、b應滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<010.當ab>0時,y=ax2與y=ax+b的圖象大致是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.將數字37000000用科學記數法表示為_____.12.實數,﹣3,,,0中的無理數是_____.13.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.14.關于x的方程ax=x+2(a1)的解是________.15.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.16.我國倡導的“一帶一路”建設將促進我國與世界各國的互利合作,“一帶一路”地區覆蓋總人口約為4400000000人,將數據4400000000用科學記數法表示為______.三、解答題(共8題,共72分)17.(8分)計算:2cos30°+--()-218.(8分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發生改變時,請說明直線QH過定點,并求定點坐標.19.(8分)在以“關愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內隨機抽查部分學生,了解到上學方式主要有:A:結伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數據整理繪制成如下兩幅不完整的統計圖.請根據圖中信息,解答下列問題:(1)本次抽查的學生人數是多少人?(2)請補全條形統計圖;請補全扇形統計圖;(3)“自行乘車”對應扇形的圓心角的度數是度;(4)如果該校學生有2000人,請你估計該校“家人接送”上學的學生約有多少人?20.(8分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統計圖.類別頻數(人數)頻率小說0.5戲劇4散文100.25其他6合計1根據圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數分布表,并求出扇形統計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.21.(8分)先化簡,再求值:(﹣m+1)÷,其中m的值從﹣1,0,2中選取.22.(10分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.23.(12分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.24.甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數量(件)與時間(時)的函數圖象如圖所示.(1)求甲組加工零件的數量y與時間之間的函數關系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經過多長時間恰好裝滿第1箱?再經過多長時間恰好裝滿第2箱?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

解:如圖:利用頂點式及取值范圍,可畫出函數圖象會發現:當x=3時,y=k成立的x值恰好有三個.故選:D.2、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數占總情況數的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.3、D【解析】

根據題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數形結合的數學思想.4、C【解析】

用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點睛】此題主要考查了用科學記數法表示較大的數,一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.5、A【解析】

利用平行四邊形的性質即可解決問題.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【點睛】題考查了平行四邊形的性質和三角形周長的計算,平行四邊形的性質有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.6、B【解析】

根據一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.7、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.8、C【解析】

先求出的值,然后再利用算術平方根定義計算即可得到結果.【詳解】=4,4的算術平方根是2,所以的算術平方根是2,故選C.【點睛】本題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.9、B【解析】試題分析:∵一次函數y=kx+b(k、b是常數,k≠0)的圖象經過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數的性質和圖象10、D【解析】

∵ab>0,∴a、b同號.當a>0,b>0時,拋物線開口向上,頂點在原點,一次函數過一、二、三象限,沒有圖象符合要求;當a<0,b<0時,拋物線開口向下,頂點在原點,一次函數過二、三、四象限,B圖象符合要求.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、3.7×107【解析】

根據科學記數法即可得到答案.【詳解】數字37000000用科學記數法表示為3.7×107.【點睛】本題主要考查了科學記數法的基本概念,解本題的要點在于熟知科學記數法的相關知識.12、【解析】

無理數包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數,根據以上內容判斷即可.【詳解】解:=4,是有理數,﹣3、、0都是有理數,是無理數.故答案為:.【點睛】本題考查了對無理數的定義的理解和運用,注意:無理數是指無限不循環小數,包括三方面的數:①含π的,②一些開方開不盡的根式,③一些有規律的數.13、【解析】

根據∠A的正弦求出∠A=60°,再根據30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.【點睛】本題考查了特殊角的三角函數值,熟記30°、45°、60°角的三角函數值是解題的關鍵.14、【解析】分析:依據等式的基本性質依次移項、合并同類項、系數化為1即可得出答案.詳解:移項,得:ax﹣x=1,合并同類項,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質及解一元一次方程的基本步驟是解題的關鍵.15、3<d<7【解析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.16、4.4×1【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】4400000000的小數點向左移動9位得到4.4,所以4400000000用科學記數法可表示為:4.4×1,故答案為4.4×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、5【解析】

根據實數的計算,先把各數化簡,再進行合并即可.【詳解】原式==5【點睛】此題主要考查實數的計算,解題的關鍵是熟知特殊三角函數的化簡與二次根式的運算.18、(1)y=x2﹣2x﹣3;(2);(3)當k發生改變時,直線QH過定點,定點坐標為(0,﹣2)【解析】

(1)把點A(﹣1,0),C(0,﹣3)代入拋物線表達式求得b,c,即可得出拋物線的解析式;(2)作CH⊥EF于H,設N的坐標為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因為﹣4≤n≤0,即可得出m的取值范圍;(3)設點P(x1,y1),Q(x2,y2),則點H(﹣x1,y1),設直線HQ表達式為y=ax+t,用待定系數法和韋達定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(0,﹣2).【詳解】解:(1)∵拋物線y=x2+bx+c經過點A、C,把點A(﹣1,0),C(0,﹣3)代入,得:,解得,∴拋物線的解析式為y=x2﹣2x﹣3;(2)如圖,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的頂點坐標E(1,﹣4),設N的坐標為(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴當時,m最小值為;當n=﹣4時,m有最大值,m的最大值=16﹣12+1=1.∴m的取值范圍是.(3)設點P(x1,y1),Q(x2,y2),∵過點P作x軸平行線交拋物線于點H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,設直線HQ表達式為y=ax+t,將點Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直線HQ表達式為y=(x2﹣x1)x﹣2,∴當k發生改變時,直線QH過定點,定點坐標為(0,﹣2).【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了配方法求二次函數的最值、待定系數法求一次函數的解析式、(2)問通過相似三角形建立m與n的函數關系式是解題的關鍵.19、(1)本次抽查的學生人數是120人;(2)見解析;(3)126;(4)該校“家人接送”上學的學生約有500人.【解析】

(1)本次抽查的學生人數:18÷15%=120(人);(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),據此補全條形統計圖;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人).【詳解】解:(1)本次抽查的學生人數:18÷15%=120(人),答:本次抽查的學生人數是120人;(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),補全條形統計圖如下:“結伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統計圖中占的度數為360°×35%=126°,補全扇形統計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°,故答案為126;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人),答:該校“家人接送”上學的學生約有500人.【點睛】本題主要考查條形統計圖及扇形統計圖及相關計算,用樣本估計總體.解題的關鍵是讀懂統計圖,從條形統計圖中得到必要的信息是解決問題的關鍵.20、(1)41(2)15%(3)【解析】

(1)用散文的頻數除以其頻率即可求得樣本總數;(2)根據其他類的頻數和總人數求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數,找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.21、,當m=0時,原式=﹣1.【解析】

原式括號中兩項通分,并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果.根據分數分母不為零的性質,不等于-1、2,將代入原式即可解出答案.【詳解】解:原式,,,,∵且,∴當時,原式.【點睛】本題主要考查分數的性質、通分,四則運算法則以及倒數.22、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論