




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省郴州市蘇仙區(qū)湘南中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點是空間直角坐標(biāo)系中的一點,過點作平面的垂線,垂足為,則點的坐標(biāo)為()A.(1,0,0) B. C. D.2.設(shè),則的取值范圍是()A. B. C. D.3.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內(nèi)的任意一條直線都平行于平面C.一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行D.分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線4.已知點到直線的距離為1,則的值為()A. B. C. D.5.若直線與圓交于兩點,關(guān)于直線對稱,則實數(shù)的值為()A. B. C. D.6.設(shè)變量,滿足約束條件則目標(biāo)函數(shù)的最小值為()A.4 B.-5 C.-6 D.-87.已知函數(shù),若方程有5個解,則的取值范圍是()A. B. C. D.8.已知向量,,若,則與的夾角為()A. B. C. D.9.已知的三個內(nèi)角所對的邊為,面積為,且,則等于()A. B. C. D.10.如圖所示,從氣球上測得正前方的河流的兩岸,的俯角分別為,,此時氣球的高度是60m,則河流的寬度等于()A.m B.m C.m D.m二、填空題:本大題共6小題,每小題5分,共30分。11.三棱錐中,分別為的中點,記三棱錐的體積為,的體積為,則____________12.已知點及其關(guān)于原點的對稱點均在不等式表示的平面區(qū)域內(nèi),則實數(shù)的取值范圍是____.13.若點到直線的距離是,則實數(shù)=______.14.若當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍是_____.15.如圖,正方形中,分別為邊上點,且,,則________.16.設(shè)是等差數(shù)列的前項和,若,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(I)求函數(shù)的最小正周期.(II)求函數(shù)的單調(diào)遞增區(qū)間.(III)求函數(shù)在區(qū)間上的最小值和最大值.18.已知數(shù)列滿足,.(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.19.如果有窮數(shù)列(m為正整數(shù))滿足,即,那么我們稱其為對稱數(shù)列.(1)設(shè)數(shù)列是項數(shù)為7的對稱數(shù)列,其中,為等差數(shù)列,且,依次寫出數(shù)列的各項;(2)設(shè)數(shù)列是項數(shù)為(正整數(shù))的對稱數(shù)列,其中是首項為50,公差為-4的等差數(shù)列.記數(shù)列的各項和為數(shù)列,當(dāng)k為何值時,取得最大值?并求出此最大值;(3)對于確定的正整數(shù),寫出所有項數(shù)不超過2m的對稱數(shù)列,使得依次為該數(shù)列中連續(xù)的項.當(dāng)時,求其中一個數(shù)列的前2015項和.20.已知數(shù)列的前項和,且滿足:,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.21.已知四棱錐的底面為直角梯形,,,底面,且,是的中點.(1)求證:直線平面;(2)若,求二面角的正弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)空間直角坐標(biāo)系的坐標(biāo)關(guān)系,即可求得點的坐標(biāo).【詳解】空間直角坐標(biāo)系中點過點作平面的垂線,垂足為,可知故選:B【點睛】本題考查了空間直角坐標(biāo)系及坐標(biāo)關(guān)系,屬于基礎(chǔ)題.2、B【解析】
由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.3、A【解析】
逐一考查所給的選項是否正確即可.【詳解】逐一考查所給的選項:A.平面∥平面,一條直線平行于平面,可能a在平面內(nèi)或與相交,不一定平行于平面,題中說法錯誤;B.由面面平行的定義可知:若平面∥平面,則內(nèi)的任意一條直線都平行于平面,題中說法正確;C.由面面平行的判定定理可得:若一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行,題中說法正確;D.分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線,不可能相交,題中說法正確.本題選擇A選項.【點睛】本題考查了空間幾何體的線面位置關(guān)系判定與證明:(1)對于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對于線面位置關(guān)系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關(guān)鍵.4、D【解析】
根據(jù)點到直線的距離公式列式求解參數(shù)即可.【詳解】由題,,因為,故.故選:D【點睛】本題主要考查了點到線的距離公式求參數(shù)的問題,屬于基礎(chǔ)題.5、A【解析】
由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【點睛】本題給出直線與圓相交,且兩個交點關(guān)于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關(guān)系等知識,屬于基礎(chǔ)題.6、D【解析】繪制不等式組所表示的平面區(qū)域,結(jié)合目標(biāo)函數(shù)的幾何意義可知,目標(biāo)函數(shù)在點處取得最小值.本題選擇D選項.7、D【解析】
利用因式分解法,求出方程的解,結(jié)合函數(shù)的性質(zhì),根據(jù)題意可以求出的取值范圍.【詳解】,,或,由題意可知:,由題可知:當(dāng)時,有2個解且有2個解且,當(dāng)時,,因為,所以函數(shù)是偶函數(shù),當(dāng)時,函數(shù)是減函數(shù),故有,函數(shù)是偶函數(shù),所以圖象關(guān)于縱軸對稱,即當(dāng)時有,,所以,綜上所述;的取值范圍是,故本題選D.【點睛】本題考查了已知方程解的情況求參數(shù)取值問題,正確分析函數(shù)的性質(zhì),是解題的關(guān)鍵.8、D【解析】∵,,⊥,∴,解得.∴.∴,又.設(shè)向量與的夾角為,則.又,∴.選D.9、C【解析】
利用三角形面積公式可得,結(jié)合正弦定理及三角恒等變換知識可得,從而得到角A.【詳解】∵∴即∴∴∴,∴(舍)∴故選C【點睛】此題考查了正弦定理、三角形面積公式,以及三角恒等變換,熟練掌握邊角的轉(zhuǎn)化是解本題的關(guān)鍵.10、A【解析】
在直角三角形中,利用銳角三角函數(shù)求出的長,在直角三角形中,利用銳角三角函數(shù)求出的長,最后利用進行求解即可.【詳解】在直角三角形中,.在直角三角形中,.所以有.故選:A【點睛】本題考查了銳角三角函數(shù)的應(yīng)用,考查了數(shù)學(xué)運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知設(shè)點到平面距離為,則點到平面距離為,所以,考點:幾何體的體積.12、【解析】
根據(jù)題意,設(shè)與關(guān)于原點的對稱,分析可得的坐標(biāo),由二元一次不等式的幾何意義可得,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,設(shè)與關(guān)于原點的對稱,則的坐標(biāo)為,若、均在不等式表示的平面區(qū)域內(nèi),則有,解可得:,即的取值范圍為,;故答案為,.【點睛】本題考查二元一次不等式表示平面區(qū)域的問題,涉及不等式的解法,屬于基礎(chǔ)題.13、或1【解析】
由點到直線的距離公式進行解答,即可求出實數(shù)a的值.【詳解】點(1,a)到直線x﹣y+1=0的距離是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴實數(shù)a的值為﹣1或1.故答案為:﹣1或1.【點睛】本題考查了點到直線的距離公式的應(yīng)用問題,解題時應(yīng)熟記點到直線的距離公式,是基礎(chǔ)題.14、【解析】
用換元法把不等式轉(zhuǎn)化為二次不等式.然后用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.【詳解】設(shè),是增函數(shù),當(dāng)時,,不等式化為,即,不等式在上恒成立,時,顯然成立,,對上恒成立,由對勾函數(shù)性質(zhì)知在是減函數(shù),時,,∴,即.綜上,.故答案為:.【點睛】本題考查不等式恒成立問題,解題方法是轉(zhuǎn)化與化歸,首先用換元法化指數(shù)型不等式為一元二次不等式,再用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.15、(或)【解析】
先設(shè),根據(jù)題意得到,再由兩角和的正切公式求出,得到,進而可得出結(jié)果.【詳解】設(shè),則所以,所以,因此.故答案為【點睛】本題主要考查三角恒等變換的應(yīng)用,熟記公式即可,屬于常考題型.16、1.【解析】
由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)的最小正周期;(II)的單調(diào)遞增區(qū)間為;(III);【解析】試題分析;(1)化函數(shù)f(x)為正弦型函數(shù),求出f(x)的最小正周期;(2)根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)增區(qū)間;(3)根據(jù)x的取值范圍求出2x+的取值范圍,從而求出f(x)的最值(I)因此,函數(shù)的最小正周期.(II)由得:.即函數(shù)的單調(diào)遞增區(qū)間為.(III)因為所以所以18、(1);(2)【解析】
(1)由知:,利用等比數(shù)列的通項公式即可得出;(2)bn=|11﹣2n|,設(shè)數(shù)列{11﹣2n}的前n項和為Tn,則.當(dāng)n≤5時,Sn=Tn;當(dāng)n≥6時,Sn=2S5﹣Tn.【詳解】(1)證明:由知,所以數(shù)列是以為首項,為公比的等比數(shù)列.則,.(2),設(shè)數(shù)列前項和為,則,當(dāng)時,;當(dāng)時,;所以.【點睛】本題考查了等比數(shù)列與等差數(shù)列的通項公式及其前n項和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.19、(1)2,5,8,11,8,5,2;(2);(3)答案見詳解【解析】
(1)求出前四項的公差,然后寫出即可(2)先算出,然后(3)依題意,可寫出所有項數(shù)不超過2m的對稱數(shù)列,然后求出第一個數(shù)列的【詳解】(1)設(shè)數(shù)列的公差為,則,解得所以各項為2,5,8,11,8,5,2(2)因為是首項為50,公差為-4的等差數(shù)列所以所以所以當(dāng)時取得最大值,為626(3)所有可能的對稱數(shù)列是①,②,③,④,對于①,當(dāng)時,當(dāng)時所以【點睛】本題是一道數(shù)列的新定義的題,考查了數(shù)列的求和和最值問題.20、(1);(2).【解析】試題分析:(1)當(dāng)時,可求出,當(dāng)時,利用可求出是以2為首項,2為公比的等比數(shù)列,故而可求出其通項公式;(2)由裂項相消可求出其前項和.試題解析:(1)依題意:當(dāng)時,有:,又,故,由①當(dāng)時,有②,①-②得:化簡得:,∴是以2為首項,2為公比的等比數(shù)列,∴.(2)由(1)得:,∴∴21、(1)證明見解析;(2).【解析】
(1)取中點,連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- java面試試題及答案
- NoSQL數(shù)據(jù)庫使用考題及答案
- 2025餐飲集團股份制合同協(xié)議書
- 數(shù)字藝術(shù)作品版權(quán)保護與版權(quán)交易平臺技術(shù)挑戰(zhàn)與應(yīng)對報告
- 2025年環(huán)境監(jiān)測物聯(lián)網(wǎng)技術(shù)在環(huán)保產(chǎn)業(yè)環(huán)境監(jiān)測行業(yè)風(fēng)險管理中的應(yīng)用報告
- 2025年教育行業(yè)質(zhì)量評估與認證體系中的教育評價與教育評價體系可持續(xù)發(fā)展研究報告
- 養(yǎng)鵝場運營管理方案
- 工業(yè)互聯(lián)網(wǎng)平臺數(shù)據(jù)備份恢復(fù)策略與數(shù)據(jù)備份策略實施案例分析報告
- 影視行業(yè)新趨勢:2025年工業(yè)化制作流程與質(zhì)量控制創(chuàng)新實踐研究報告
- 2025年城市智能照明系統(tǒng)升級項目照明質(zhì)量評估報告
- 《醫(yī)療機構(gòu)工作人員廉潔從業(yè)九項準(zhǔn)則》解讀
- 水產(chǎn)養(yǎng)殖網(wǎng)箱租賃與飼料供應(yīng)合作協(xié)議
- TCERDS5-2023企業(yè)ESG管理體系
- 2025年全國保密教育線上培訓(xùn)考試試題庫含答案(新)附答案詳解
- 江蘇省南京市2025年高三第四次模擬考試英語試卷含答案
- 鋼結(jié)構(gòu)施工 課件項目3 鋼結(jié)構(gòu)工程安裝
- 《神經(jīng)網(wǎng)絡(luò)模型》課件
- 四川省成都外國語2025年高三聯(lián)考數(shù)學(xué)試題科試題含解析
- 后現(xiàn)代思潮與教育
- 四川省樹德中學(xué)2025年高三第一次模擬考試(物理試題含解析)
- 2025年科技節(jié)活動小學(xué)科普知識競賽題庫及答案(共80題)
評論
0/150
提交評論