2023-2024學年山東省寧陽十一中重點中學中考試題猜想數學試卷含解析_第1頁
2023-2024學年山東省寧陽十一中重點中學中考試題猜想數學試卷含解析_第2頁
2023-2024學年山東省寧陽十一中重點中學中考試題猜想數學試卷含解析_第3頁
2023-2024學年山東省寧陽十一中重點中學中考試題猜想數學試卷含解析_第4頁
2023-2024學年山東省寧陽十一中重點中學中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山東省寧陽十一中重點中學中考試題猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數y=在第二象限內的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣62.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(

)A.2cm2

B.3cm2

C.4cm2

D.5cm23.如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G到BE的距離是()A. B. C. D.4.提出“金山銀山,不如綠水青山”,國家環保部大力治理環境污染,空氣質量明顯好轉,將惠及13.75億中國人,這個數字用科學記數法表示為()A.13.75×106B.13.75×105C.1.375×108D.1.375×1095.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π6.不等式2x﹣1<1的解集在數軸上表示正確的是()A. B.C. D.7.7的相反數是()A.7 B.-7 C. D.-8.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.9.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.510.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線交于點,,與軸負半軸,軸正半軸分別交于點,,,的延長線相交于點,則的值是_________.12.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.13.某航空公司規定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數圖象確定,則旅客可攜帶的免費行李的最大質量為kg14.月球的半徑約為1738000米,1738000這個數用科學記數法表示為___________.15.計算:=_____________.16.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.三、解答題(共8題,共72分)17.(8分)春節期間,收發微信紅包已經成為各類人群進行交流聯系、增強感情的一部分,小王在2017年春節共收到紅包400元,2019年春節共收到紅包484元,求小王在這兩年春節收到紅包的年平均增長率.18.(8分)某漁業養殖場,對每天打撈上來的魚,一部分由工人運到集貿市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養殖場共有30名工人,每名工人只能參與打撈與到集貿市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養殖場一天的總銷售收入為y元,求y與x的函數關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.19.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.20.(8分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.21.(8分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規定時間內完成;若由乙隊單獨施工,則完成工程所需天數是規定天數的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規定時間是多少天?22.(10分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數關系式,并寫出自變量t的取值范圍.23.(12分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節目的喜愛情況,隨機抽取了部分學生進行問卷調查,根據調查結果繪制了如下圖所示的兩幅不完整統計圖,請你根據圖中信息解答下列問題:=1\*GB2⑴補全條形統計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據以上統計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調查中,甲、乙兩班分別有人喜愛新聞節目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率24.如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【點睛】本題考查反比例函數于一次函數的交點問題,銳角三角函數等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.2、C【解析】

延長AP交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質和判定的應用,關鍵是求出S△PBC=S△PBE+S△PCE=12S△3、A【解析】

根據平行線的判定,可得AB與GE的關系,根據平行線間的距離相等,可得△BEG與△AEG的關系,根據根據勾股定理,可得AH與BE的關系,再根據勾股定理,可得BE的長,根據三角形的面積公式,可得G到BE的距離.【詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點B作BH⊥AE于點H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設點G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點G到BE的距離為.故選A.【點睛】本題主要考查了幾何變換綜合題.涉及正方形的性質,全等三角形的判定及性質,等積式及四點共圓周的知識,綜合性強.解題的關鍵是運用等積式及四點共圓的判定及性質求解.4、D【解析】

用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】13.75億=1.375×109.故答案選D.【點睛】本題考查的知識點是科學記數法,解題的關鍵是熟練的掌握科學記數法.5、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質;能夠通過作輔助線將所求的角轉移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.6、D【解析】

先求出不等式的解集,再在數軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數化為1得,x<1.在數軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.7、B【解析】

根據只有符號不同的兩個數互為相反數,可得答案.【詳解】7的相反數是?7,故選:B.【點睛】此題考查相反數,解題關鍵在于掌握其定義.8、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.9、C【解析】

根據AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據正方形內角及角平分線進行角度轉換證明EG=EB,FG=FB,即可判定②選項;設OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,FG=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質,相似三角形,菱形的判定與性質等四邊形的綜合題.該題難度較大,需要學生對有關于四邊形的性質的知識有一系統的掌握.10、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

連接,根據可得,并且根據圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【點睛】本題考查圓的性質和直角三角形的性質,能夠根據圓性質得出是等腰直角三角形是解題的關鍵.12、.【解析】

由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.13、20【解析】設函數表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg14、1.738×1【解析】

解:將1738000用科學記數法表示為1.738×1.故答案為1.738×1.【點睛】本題考查科學記數法—表示較大的數,掌握科學計數法的計數形式,難度不大.15、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關運算法則是正確解答這類題的關鍵.16、【解析】

由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.三、解答題(共8題,共72分)17、小王在這兩年春節收到的年平均增長率是10【解析】

增長后的量=增長前的量×(1+增長率),2018年收到微信紅包金額400(1+x)元,在2018年的基礎上再增長x,就是2019年收到微信紅包金額400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【詳解】解:設小王在這兩年春節收到的紅包的年平均增長率是x.依題意得:400解得x1答:小王在這兩年春節收到的年平均增長率是10【點睛】本題考查了一元二次方程的應用.對于增長率問題,增長前的量×(1+年平均增長率)年數=增長后的量.18、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【解析】

(1)根據題意可以得到y關于x的函數解析式,本題得以解決;(2)根據題意可以得到x的不等式組,從而可以求得x的取值范圍,從而可以得到y的最大值,本題得以解決.【詳解】(1)由題意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y與x的函數關系式為y=﹣50x+10500;(2)由題意可得,,得x,∵x是整數,y=﹣50x+10500,∴當x=12時,y取得最大值,此時,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【點睛】本題考查一次函數的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用函數和不等式的性質解答.19、(1)證明見解析;(2)2.【解析】

(1)作輔助線,根據等腰三角形三線合一得BD=CD,根據三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;(2)證明△ODF∽△AEF,列比例式可得結論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關鍵.20、(1)直線的表達式為,雙曲線的表達方式為;(2)點P的坐標為或【解析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據直線解析式求得點A坐標,由S△ACP=AC?|yP|=4求得點P的縱坐標,繼而可得答案.詳解:(1)∵直線與雙曲線()都經過點B(-1,4),,,∴直線的表達式為,雙曲線的表達方式為.(2)由題意,得點C的坐標為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標為或.點睛:本題主要考查反比例函數和一次函數的交點問題,熟練掌握待定系數法求函數解析式及三角形的面積是解題的關鍵.21、這項工程的規定時間是83天【解析】

依據題意列分式方程即可.【詳解】設這項工程的規定時間為x天,根據題意得451解得x=83.檢驗:當x=83時,3x≠0.所以x=83是原分式方程的解.答:這項工程的規定時間是83天.【點睛】正確理解題意是解題的關鍵,注意檢驗.22、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】

(1)首先用待定系數法求出拋物線的解析式,然后進一步確定點B,C的坐標.(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論