




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海黃浦區2024屆高考考前模擬數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數,那么a+b的值是A. B.C. D.2.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.3.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.324.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}5.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.66.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.7.若函數在時取得最小值,則()A. B. C. D.8.若等差數列的前項和為,且,,則的值為().A.21 B.63 C.13 D.849.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.8410.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.11.的展開式中的系數是()A.160 B.240 C.280 D.32012.某網店2019年全年的月收支數據如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數與眾數均為30 D.這一年的總利潤超過400萬元二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數,且,的最小值為________.14.函數的單調增區間為__________.15.三棱錐中,點是斜邊上一點.給出下列四個命題:①若平面,則三棱錐的四個面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認為正確命題的序號都填上)16.已知實數,滿足,則目標函數的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中,.(1)當時,求的值;(2)當的最小正周期為時,求在上的值域.18.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.19.(12分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.20.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.21.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.22.(10分)已知,(其中).(1)求;(2)求證:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
依照偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據偶函數的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x);奇函數和偶函數的定義域必然關于原點對稱,定義域區間兩個端點互為相反數.2、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.3、A【解析】
根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.4、C【解析】
先求集合A,再用列舉法表示出集合B,再根據交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎題.5、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.6、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.7、D【解析】
利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.8、B【解析】
由已知結合等差數列的通項公式及求和公式可求,,然后結合等差數列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數列的通項公式及求和公式的簡單應用,屬于基礎題.9、D【解析】
利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.10、B【解析】
根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題11、C【解析】
首先把看作為一個整體,進而利用二項展開式求得的系數,再求的展開式中的系數,二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數是.故選:C【點睛】本題考查二項展開式指定項的系數,掌握二項展開式的通項是解題的關鍵,屬于基礎題.12、D【解析】
直接根據折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數為30,中位數為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.14、【解析】
先求出導數,再在定義域上考慮導數的符號為正時對應的的集合,從而可得函數的單調增區間.【詳解】函數的定義域為.,令,則,故函數的單調增區間為:.故答案為:.【點睛】本題考查導數在函數單調性中的應用,注意先考慮函數的定義域,再考慮導數在定義域上的符號,本題屬于基礎題.15、①②③【解析】
對①,由線面平行的性質可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結合外接球半徑公式即可求解;對③,結合題意作出圖形,由勾股定理和內接圓對應面積公式求出錐體的高,則可求解;對④,由動點分析可知,當點與點重合時,直線與平面所成的角最大,結合幾何關系可判斷錯誤;【詳解】對于①,因為平面,所以,,,又,所以平面,所以,故四個面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設內心是,則平面,連接,則有,又內切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時,點與點重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點睛】本題考查立體幾何基本關系的應用,線面垂直的性質及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題16、-1【解析】
作出不等式對應的平面區域,利用線性規劃的知識,通過平移即可求z的最大值.【詳解】作出實數x,y滿足對應的平面區域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當直線yx經過點A時,直線yx的縱截距最小,此時z最小.由,得A(﹣1,﹣1),此時z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點睛】本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據,得到函數,然后,直接求解的值;(2)首先,化簡函數,然后,結合周期公式,得到,再結合,及正弦函數的性質解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當時,.當時,(最大值)當時,在是增函數,在是減函數.的值域是.【點睛】本題主要考查了簡單角的三角函數值的求解方法,兩角和與差的正弦、余弦公式,三角函數的圖象與性質等知識,考查了運算求解能力,屬于中檔題.18、(1);(2).【解析】
(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,所以(舍)或.故橢圓的標準方程為.(2)設點的坐標為,直線的方程為,直線的方程為.據得.據題意,得,得,同理,得,所以.又可求,得,,所以.【點睛】本題考查橢圓標準方程的求解以及聯立方程求定值的問題,聯立方程求定值的關鍵在于利用韋達定理進行消參,屬于中檔題19、(1);(2).【解析】
(1)根據離心率以及,即可列方程求得,則問題得解;(2)設直線方程為,聯立橢圓方程,結合韋達定理,根據題意中轉化出的,即可求得參數,則三角形面積得解.【詳解】(1)設,由題意可得.因為是的中位線,且,所以,即,因為進而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當直線斜率為時,顯然不成立.直線斜率不為時,設直線的方程為,聯立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【點睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.20、(1)詳見解析;(2).【解析】
(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市建設委員會黨建工作總結
- 管道工人安全交底-浪潮-2022.7
- 江蘇開放大學2025年春操作系統原理第六章復習題20250608
- 2025合同終止協議標準范本
- 2025建筑工程施工集體勞動合同樣本
- 神秘地下城市基礎知識點歸納
- 大理州洱源縣中央特崗教師招聘筆試真題2024
- 內蒙古自治區煙草專賣局系統招聘考試真題2024
- 歷史地理信息系統基礎知識點歸納
- 石大學前兒童保育學課外必讀:反式脂肪酸
- 數智時代的商業變革智慧樹知到期末考試答案2024年
- 2024年昆明祿勸國有資本投資開發集團有限公司招聘筆試參考題庫含答案解析
- (高清版)TDT 1001-2012 地籍調查規程
- 《高溫熔融金屬吊運安全規程》(AQ7011-2018)
- 全口牙缺失種植方案
- 敏捷項目管理的敏捷團隊文化
- 關于城鄉幼兒園教育差異的調研報告
- 《彈簧設計基礎知識》課件
- 《觀念決定行動》課件
- 廣西南寧市二中2024屆物理高一下期末質量檢測模擬試題含解析
- 代練接單協議范本
評論
0/150
提交評論