




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省銅陵一中2024屆高考沖刺押題(最后一卷)數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加2.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.3.若復數z滿足,則()A. B. C. D.4.已知集合.為自然數集,則下列表示不正確的是()A. B. C. D.5.下列四個圖象可能是函數圖象的是()A. B. C. D.6.若集合,,則()A. B. C. D.7.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③8.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.9.已知函數,,若成立,則的最小值是()A. B. C. D.10.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,211.設全集,集合,,則集合()A. B. C. D.12.數列滿足:,則數列前項的和為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為______.14.展開式中,含項的系數為______.15.設函數滿足,且當時,又函數,則函數在上的零點個數為___________.16.實數滿足,則的最大值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數在上的最大值為3.(1)求的值及函數的單調遞增區間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.18.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.19.(12分)已知函數,不等式的解集為.(1)求實數,的值;(2)若,,,求證:.20.(12分)是數列的前項和,且.(1)求數列的通項公式;(2)若,求數列中最小的項.21.(12分)已知關于的不等式有解.(1)求實數的最大值;(2)若,,均為正實數,且滿足.證明:.22.(10分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區,如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數表示,并求在區間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.2、A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功3、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數的運算和模的計算,意在考查學生對這些知識的理解掌握水平.4、D【解析】
集合.為自然數集,由此能求出結果.【詳解】解:集合.為自然數集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.5、C【解析】
首先求出函數的定義域,其函數圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數,即可得到函數圖象關于對稱,即可排除A、D,再根據時函數值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數,圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數的性質與識圖能力,一般根據四個選擇項來判斷對應的函數性質,即可排除三個不符的選項,屬于中檔題.6、B【解析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.7、C【解析】
①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.8、A【解析】
由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.9、A【解析】分析:設,則,把用表示,然后令,由導數求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數,又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數法求函數的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數,轉化為求函數的最小值問題,另外通過二次求導,確定函數的單調區間也很容易出錯.10、C【解析】
先求出集合U,再根據補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.11、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.12、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.14、2【解析】
變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數為:.故答案為:.【點睛】本題考查了二項式定理的應用,意在考查學生的計算能力和應用能力.15、1【解析】
判斷函數為偶函數,周期為2,判斷為偶函數,計算,,畫出函數圖像,根據圖像到答案.【詳解】知,函數為偶函數,,函數關于對稱。,故函數為周期為2的周期函數,且。為偶函數,,,當時,,,函數先增后減。當時,,,函數先增后減。在同一坐標系下作出兩函數在上的圖像,發現在內圖像共有1個公共點,則函數在上的零點個數為1.故答案為:.【點睛】本題考查了函數零點問題,確定函數的奇偶性,對稱性,周期性,畫出函數圖像是解題的關鍵.16、.【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規劃的線性目標函數的最優解問題.線性目標函數的最優解一般在平面區域的頂點或邊界處取得,所以對于一般的線性規劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),函數的單調遞增區間為;(2).【解析】
(1)運用降冪公式和輔助角公式,把函數的解析式化為正弦型函數解析式形式,根據已知,可以求出的值,再結合正弦型函數的性質求出函數的單調遞增區間;(2)由(1)結合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉化為兩邊對角的正弦值的比值的取值范圍,結合已知是銳角三角形,三角形內角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數的單調遞增區間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數的單調性,考查了數學運算能力.18、(1)見解析(2)見解析【解析】
(1)連結AC交BD于點O,連結OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結AC交BD于點O,連結OE因為四邊形ABCD為平行四邊形∴O為AC中點,又E為PC中點,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點所以PC⊥DE因為平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點睛】本題主要考查空間位置關系的證明,線面平行一般轉化為線線平行來證明,直線與直線垂直通常利用線面垂直來進行證明,側重考查邏輯推理的核心素養.19、(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當且僅當,即,時等號成立.故,即.【點睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.20、(1);(2).【解析】
(1)由可得出,兩式作差可求得數列的通項公式;(2)求得,利用數列的單調性的定義判斷數列的單調性,由此可求得數列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數列的通項公式為;(2)由(1)得,則.當時,,即,;當時,,即,.所以,數列的最小項為.【點睛】本題考查利用與的關系求通項,同時也考查了利用數列的單調性求數列中的最小項,考查推理能力與計算能力,屬于中等題.21、(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關于的不等式有解等價于,(ⅰ)當時,上述不等式轉化為,解得,(ⅱ)當時,上述不等式轉化為,解得,綜上所述,實數的取值范圍為,則實數的最大值為3,即.(2)證明:根據(1)求解知,所以,又∵,,,,,當且僅當時,等號成立,即,∴,所以,.【點睛】本題考查絕對值不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業設計商業計劃書
- 跨端口安全防護的動態響應機制設計-洞察闡釋
- 安全教育課試題及答案
- 乘公交車安全試題及答案
- 小學五年級下冊音樂教案
- 如何根據臉型選擇適合的發型
- 2025合同協議書填寫范本
- 非煤礦山開采權出讓合同詳盡范文
- 醫療機構代理記賬與醫療行業政策解讀服務協議
- 2025【范本】物業服務合同協議
- 2025年下半年江蘇省南通海門區應急管理局招聘政府購買服務人員2人易考易錯模擬試題(共500題)試卷后附參考答案
- 全國縣中頭雁教師崗位計劃人員推表
- 幼兒園小班科學《汽車嘟嘟》課件
- 會計理論數智時代變革邏輯:范式創新與結構重塑
- 2025年人教版小學五年級下冊奧林匹克數學競賽試卷(附參考答案)
- 血液內科入科教育大綱
- 現農莊可行性研究報告
- 廢舊金屬代賣合同協議
- 活板(含答案與解析)-2024年中考語文之文言文對比閱讀(全國版)
- 2025年幼兒教師通識性知識培訓考試題庫(附答案)
- 儲能現場安全培訓
評論
0/150
提交評論