江蘇省泰州市泰興市實驗2024屆中考適應性考試數學試題含解析_第1頁
江蘇省泰州市泰興市實驗2024屆中考適應性考試數學試題含解析_第2頁
江蘇省泰州市泰興市實驗2024屆中考適應性考試數學試題含解析_第3頁
江蘇省泰州市泰興市實驗2024屆中考適應性考試數學試題含解析_第4頁
江蘇省泰州市泰興市實驗2024屆中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰州市泰興市實驗2024屆中考適應性考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC內接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.2.下列運算正確的是()A. B.C. D.3.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件4.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關系是()A.點A在⊙O內 B.點A在⊙O上 C.點A在⊙O外 D.內含5.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.56.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形7.化簡的結果為()A.﹣1 B.1 C. D.8.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.下列四個實數中是無理數的是()A.2.5B.10310.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確二、填空題(共7小題,每小題3分,滿分21分)11.A、B兩地之間為直線距離且相距600千米,甲開車從A地出發前往B地,乙騎自行車從B地出發前往A地,已知乙比甲晚出發1小時,兩車均勻速行駛,當甲到達B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發的時間t(小時)之間的圖象,則當甲第二次與乙相遇時,乙離B地的距離為_____千米.12.含45°角的直角三角板如圖放置在平面直角坐標系中,其中A(-2,0),B(0,1),則直線BC的解析式為______.13.(11·湖州)如圖,已知A、B是反比例函數(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發,沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數圖象大致為14.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).15.已知AD、BE是△ABC的中線,AD、BE相交于點F,如果AD=6,那么AF的長是_____.16.計算tan260°﹣2sin30°﹣cos45°的結果為_____.17.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發現還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數關系如圖所示.已知小剛從家出發7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發5分鐘時乘上公交車;③小剛下公交車后跑向學校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.三、解答題(共7小題,滿分69分)18.(10分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據以往的學習經驗,他想到了方程與函數的關系,一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.根據以上方程與函數的關系,如果我們直到函數y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.佳佳為了解函數y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數的圖象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接寫出m的值,并畫出函數圖象;(2)根據表格和圖象可知,方程的解有個,分別為;(3)借助函數的圖象,直接寫出不等式x3+2x2>x+2的解集.19.(5分)如圖,四邊形AOBC是正方形,點C的坐標是(4,0).正方形AOBC的邊長為,點A的坐標是.將正方形AOBC繞點O順時針旋轉45°,點A,B,C旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;動點P從點O出發,沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發,沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).20.(8分)如圖1,是一個材質均勻可自由轉動的轉盤,轉盤的四個扇形面積相等,分別有數字1,2,3,1.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規則為:游戲者每轉動轉盤一次,當轉盤停止運動時,指針所落扇形中的數字是幾(當指針落在四個扇形的交線上時,重新轉動轉盤),就沿正方形的邊順時針方向連續跳幾個邊長.如:若從圖A起跳,第一次指針所落扇形中的數字是3,就順時針連線跳3個邊長,落到圈D;若第二次指針所落扇形中的數字是2,就從D開始順時針續跳2個邊長,落到圈B;……設游戲者從圈A起跳.(1)嘉嘉隨機轉一次轉盤,求落回到圈A的概率P1;(2)琪琪隨機轉兩次轉盤,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?21.(10分)某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關于x的函數關系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?22.(10分)九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數圖象如圖所示.(1)求關于的函數解析式;(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?23.(12分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經過點C、D,圓心距.(1)當m=6時,求線段CD的長;(2)設圓心O1在直線上方,試用n的代數式表示m;(3)△POO1在點P的運動過程中,是否能成為以OO1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.24.(14分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設BD為xcm,CE為ycm.小聰根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行了探究.下面是小聰的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關數值保留一位小數建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;結合畫出的函數圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數定義.2、D【解析】

由去括號法則:如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.3、B【解析】

根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的實際;不可能事件是指在一定條件下,一定不發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.4、A【解析】

直接利用點與圓的位置關系進而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關系是:點A在⊙O內.故選A.【點睛】此題主要考查了點與圓的位置關系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內?d<r是解題關鍵.5、A【解析】

根據直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.6、B【解析】

根據中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.8、D【解析】

5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.9、C【解析】本題主要考查了無理數的定義.根據無理數的定義:無限不循環小數是無理數即可求解.解:A、2.5是有理數,故選項錯誤;B、103C、π是無理數,故選項正確;D、1.414是有理數,故選項錯誤.故選C.10、D【解析】

直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據題意和函數圖象可以分別求得甲乙的速度,從而可以得到當甲第二次與乙相遇時,乙離B地的距離.【詳解】設甲的速度為akm/h,乙的速度為bkm/h,,解得,,設第二次甲追上乙的時間為m小時,100m﹣25(m﹣1)=600,解得,m=,∴當甲第二次與乙相遇時,乙離B地的距離為:25×(-1)=千米,故答案為.【點睛】本題考查一次函數的應用,解答本題的關鍵是明確題意,利用一次函數的性質和數形結合的思想解答.12、【解析】

過C作CD⊥x軸于點D,則可證得△AOB≌△CDA,可求得CD和OD的長,可求得C點坐標,利用待定系數法可求得直線BC的解析式.【詳解】如圖,過C作CD⊥x軸于點D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1.故答案為yx+1.【點睛】本題考查了待定系數法及全等三角形的判定和性質,構造全等三角形求得C點坐標是解題的關鍵.13、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數,開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數綜合題;2.動點問題的函數圖象.14、①②③【解析】

依據∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據△DFP∽△BPH,可得,再根據BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據CP=CD,即可得出PD2=PH?CD;根據三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質、相似三角形的判定與性質、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質定理與判定定理是解題的關鍵.15、4【解析】由三角形的重心的概念和性質,由AD、BE為△ABC的中線,且AD與BE相交于點F,可知F點是三角形ABC的重心,可得AF=AD=×6=4.故答案為4.點睛:此題考查了重心的概念和性質:三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.16、1【解析】

分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.17、①②③【解析】

由公交車在7至12分鐘時間內行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向學校的速度.【詳解】解:公交車7至12分鐘時間內行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數的應用.三、解答題(共7小題,滿分69分)18、(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.【解析】試題分析:(1)求出x=﹣1時的函數值即可解決問題;利用描點法畫出圖象即可;(2)利用圖象以及表格即可解決問題;(3)不等式x3+2x2>x+2的解集,即為函數y=x3+2x2﹣x﹣2的函數值大于2的自變量的取值范圍,觀察圖象即可解決問題.試題解析:(1)由題意m=﹣1+2+1﹣2=2.函數圖象如圖所示.(2)根據表格和圖象可知,方程的解有3個,分別為﹣2,或﹣1或1.(3)不等式x3+2x2>x+2的解集,即為函數y=x3+2x2﹣x﹣2的函數值大于2的自變量的取值范圍.觀察圖象可知,﹣2<x<﹣1或x>1.19、(1)4,;(2)旋轉后的正方形與原正方形的重疊部分的面積為;(3).【解析】

(1)連接AB,根據△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標,則得出正方形AOBC的面積;

(2)根據旋轉的性質可得OA′的長,從而得出A′C,A′E,再求出面積即可;

(3)根據P、Q點在不同的線段上運動情況,可分為三種列式①當點P、Q分別在OA、OB時,②當點P在OA上,點Q在BC上時,③當點P、Q在AC上時,可方程得出t.【詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,

∴△OCA為等腰Rt△,∴AD=OD=OC=2,

∴點A的坐標為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉,∴點落在軸上.∴.∴點的坐標為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉后的正方形與原正方形的重疊部分的面積為.(3)設t秒后兩點相遇,3t=16,∴t=①當點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當點P在OA上,點Q在BC上時如圖2,當OQ=QP,QM為OP的垂直平分線,

OP=2OM=2BQ,OP=t,BQ=2t-4,

t=2(2t-4),

解得:t=.③當點P、Q在AC上時,不能為等腰三角形綜上所述,當時是等腰三角形【點睛】此題考查了正方形的性質,等腰三角形的判定以及旋轉的性質,是中考壓軸題,綜合性較強,難度較大.20、(1)落回到圈A的概率P1=;(2)她與嘉嘉落回到圈A的可能性一樣.【解析】

(1)由共有1種等可能的結果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;(2)首先根據題意列出表格,然后由表格求得所有等可能的結果與最后落回到圈A的情況,再利用概率公式求解即可求得答案;【詳解】(1)∵共有1種等可能的結果,落回到圈A的只有1種情況,∴落回到圈A的概率P1=;(2)列表得:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)∵共有16種等可能的結果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),∴最后落回到圈A的概率P2==,∴她與嘉嘉落回到圈A的可能性一樣.【點睛】此題考查了列表法或樹狀圖法求概率.注意隨機擲兩次骰子,最后落回到圈A,需要兩次和是1的倍數.21、(Ⅰ);(Ⅱ)①至少要購進20件甲商品;②售完這些商品,則商場可獲得的最大利潤是2800元.【解析】

(Ⅰ)根據總利潤=(甲的售價-甲的進價)×甲的進貨數量+(乙的售價-乙的進價)×乙的進貨數量列關系式并化簡即可得答案;(Ⅱ)①根據總成本最多投入8000元列不等式即可求出x的范圍,即可得答案;②根據一次函數的增減性確定其最大值即可.【詳解】(Ⅰ)根據題意得:則y與x的函數關系式為.(Ⅱ),解得.∴至少要購進20件甲商品.,∵,∴y隨著x的增大而減小∴當時,有最大值,.∴若售完這些商品,則商場可獲得的最大利潤是2800元.【點睛】本題考查一次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論