浙江省普通高中2024屆高三下學期一模考試數學試題含解析_第1頁
浙江省普通高中2024屆高三下學期一模考試數學試題含解析_第2頁
浙江省普通高中2024屆高三下學期一模考試數學試題含解析_第3頁
浙江省普通高中2024屆高三下學期一模考試數學試題含解析_第4頁
浙江省普通高中2024屆高三下學期一模考試數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省普通高中2024屆高三下學期一模考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.2.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.3.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.4.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數5.已知函數,,若存在實數,使成立,則正數的取值范圍為()A. B. C. D.6.我國古代數學名著《數書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸7.已知函數,的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.8.不等式組表示的平面區域為,則()A., B.,C., D.,9.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-110.已知為虛數單位,若復數滿足,則()A. B. C. D.11.函數的一個零點在區間內,則實數a的取值范圍是()A. B. C. D.12.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象二、填空題:本題共4小題,每小題5分,共20分。13.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰士既不在同一行,也不在同一列的概率為______.14.一個空間幾何體的三視圖及部分數據如圖所示,則這個幾何體的體積是___________15.已知角的終邊過點,則______.16.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數有兩個極值點,.(1)求實數的取值范圍;(2)證明:.18.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發、行進步后落在軸上的不同走法的種數為.(1)分別求、、的值;(2)求的表達式.19.(12分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列20.(12分)已知橢圓的右頂點為,點在軸上,線段與橢圓的交點在第一象限,過點的直線與橢圓相切,且直線交軸于.設過點且平行于直線的直線交軸于點.(Ⅰ)當為線段的中點時,求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.21.(12分)已知{an}是一個公差大于0的等差數列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數列{bn}滿足:…,求{bn}的前n項和.22.(10分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

取中點,連接,,根據正棱柱的結構性質,得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.2、C【解析】

根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.3、B【解析】

轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.4、D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.5、A【解析】

根據實數滿足的等量關系,代入后將方程變形,構造函數,并由導函數求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數的取值范圍.【詳解】函數,,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數在求函數最值中的應用,由基本不等式求函數的最值,存在性成立問題的解法,屬于中檔題.6、B【解析】試題分析:根據題意可得平地降雨量,故選B.考點:1.實際應用問題;2.圓臺的體積.7、D【解析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數的最小正周期,則,所以,當時,,所以是函數的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數的周期性和對稱性.8、D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.9、D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.10、A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.11、C【解析】

顯然函數在區間內連續,由的一個零點在區間內,則,即可求解.【詳解】由題,顯然函數在區間內連續,因為的一個零點在區間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.12、D【解析】

利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數原理,排列與組合知識,考查了轉化能力,屬于中檔題.14、【解析】

先還原幾何體,再根據柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎題15、【解析】

由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.16、11【解析】

將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數原理,求得總的方法數.【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)先求得導函數,根據兩個極值點可知有兩個不等實根,構造函數,求得;討論和兩種情況,即可確定零點的情況,即可由零點的情況確定的取值范圍;(2)根據極值點定義可知,,代入不等式化簡變形后可知只需證明;構造函數,并求得,進而判斷的單調區間,由題意可知,并設,構造函數,并求得,即可判斷在內的單調性和最值,進而可得,即可由函數性質得,進而由單調性證明,即證明,從而證明原不等式成立.【詳解】(1)函數則,因為存在兩個極值點,,所以有兩個不等實根.設,所以.①當時,,所以在上單調遞增,至多有一個零點,不符合題意.②當時,令得,0減極小值增所以,即.又因為,,所以在區間和上各有一個零點,符合題意,綜上,實數的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因為,,所以.設,則,所以在上是增函數,在上是減函數.因為,不妨設,設,,則,當時,,,所以,所以在上是增函數,所以,所以,即.因為,所以,所以.因為,,且在上是減函數,所以,即,所以原命題成立,得證.【點睛】本題考查了利用導數研究函數的極值點,由導數證明不等式,構造函數法的綜合應用,極值點偏移證明不等式成立的應用,是高考的常考點和熱點,屬于難題.18、(1),,,(2)【解析】

(1)根據機器人的進行規律可確定、、的值;(2)首先根據機器人行進規則知機器人沿軸行進步,必須沿軸負方向行進相同的步數,而余下的每一步行進方向都有兩個選擇(向上或向下),由此結合組合知識確定機器人的每一種走法關于的表達式,并得到的表達式,然后結合二項式定理及展開式的通項公式進行求解.【詳解】解:(1),,(2)設為沿軸正方向走的步數(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數)總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數,為其中含項的系數為故.【點睛】本題考查組合數、二項式定理,考查學生的邏輯推理能力,推理論證能力以及分類討論的思想.19、(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關系an=Sn-20、(Ⅰ)直線的方程為(Ⅱ)【解析】

(1)設點,利用中點坐標公式表示點B,并代入橢圓方程解得,從而求出直線的方程;(2)設直線的方程為:,表示點,然后聯立方程,利用相切得出,然后求出切點,再設出設直線的方程,求出點,利用兩點坐標,求出直線的方程,從而求出,最后利用以上已求點的坐標表示面積,根據基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設點,當為的中點時,可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設直線的方程為:令,得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論