




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省元江縣一中2023-2024學年高考全國統考預測密卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-22.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數的取值為A.或11 B.或11 C. D.3.已知數列滿足:)若正整數使得成立,則()A.16 B.17 C.18 D.194.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.5.函數的一個單調遞增區間是()A. B. C. D.6.已知,則的大小關系為()A. B. C. D.7.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④8.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.9.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度10.下列函數中,在區間上為減函數的是()A. B. C. D.11.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則12.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.14.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.15.已知等差數列滿足,,則的值為________.16.函數的最小正周期為________;若函數在區間上單調遞增,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.18.(12分)選修4-4:坐標系與參數方程在平面直角坐標系xOy中,已知曲線C的參數方程為(α為參數).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.19.(12分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設的中垂線在軸上的截距為,求的取值范圍.20.(12分)已知函數,.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.21.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規定每件0.65元,乙公司規定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據題中數據寫出甲公司員工在這10天投遞的快件個數的平均數和眾數;(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數學期望;(3)根據題中數據估算兩公司被抽取員工在該月所得的勞務費.22.(10分)若數列滿足:對于任意,均為數列中的項,則稱數列為“數列”.(1)若數列的前項和,,試判斷數列是否為“數列”?說明理由;(2)若公差為的等差數列為“數列”,求的取值范圍;(3)若數列為“數列”,,且對于任意,均有,求數列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由函數解析式中含絕對值,所以去絕對值并畫出函數圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數的圖象如下所示;由函數圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數圖象的畫法,由函數圖象求函數的最值,屬于基礎題.2、A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.3、B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數列的相關計算,意在考查學生的計算能力和對于數列公式方法的綜合應用.4、D【解析】
根據雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.5、D【解析】
利用同角三角函數的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據三角函數單調區間的求法,求得的單調區間,由此確定正確選項.【詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區間,A,B選項中有部分增區間部分減區間.故選:D【點睛】本小題考查三角函數的恒等變換,三角函數的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數形結合思想,應用意識.6、A【解析】
根據指數函數的單調性,可得,再利用對數函數的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數性質比較大小,注意與特殊數的對比,屬于基礎題..7、D【解析】
根據面面垂直的判定定理可判斷①;根據空間面面平行的判定定理可判斷②;根據線面平行的判定定理可判斷③;根據面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.8、D【解析】
根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數量積的運算,屬于基礎題.9、B【解析】
分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.10、C【解析】
利用基本初等函數的單調性判斷各選項中函數在區間上的單調性,進而可得出結果.【詳解】對于A選項,函數在區間上為增函數;對于B選項,函數在區間上為增函數;對于C選項,函數在區間上為減函數;對于D選項,函數在區間上為增函數.故選:C.【點睛】本題考查函數在區間上單調性的判斷,熟悉一些常見的基本初等函數的單調性是判斷的關鍵,屬于基礎題.11、C【解析】
根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.12、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.14、{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.15、11【解析】
由等差數列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數列的通項公式及等差數列的性質的應用,屬于基礎題.16、【解析】
直接計算得到答案,根據題意得到,,解得答案.【詳解】,故,當時,,故,解得.故答案為:;.【點睛】本題考查了三角函數的周期和單調性,意在考查學生對于三角函數知識的綜合應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數列的通項公式,考查裂項求和,是基礎題.18、(1),(2)【解析】
試題分析:利用將極坐標方程化為直角坐標方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設點P的坐標為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標方程為x+y=1.設點P的坐標為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標方程化為直角坐標方程,點到直線距離公式19、;【解析】
根據題意,求出直線方程并與拋物線方程聯立,利用韋達定理,結合,即可求出拋物線C的方程;設,的中點為,把直線l方程與拋物線方程聯立,利用判別式求出的取值范圍,利用韋達定理求出,進而求出的中垂線方程,即可求得在軸上的截距的表達式,然后根據的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯立可得,,設,由韋達定理可得,,因為,,所以,解得,所以拋物線C的方程為;設,的中點為,由,消去可得,所以判別式,解得或,由韋達定理可得,,所以的中垂線方程為,令則,因為或,所以即為所求.【點睛】本題考查拋物線的標準方程和直線與拋物線的位置關系,考查向量知識的運用;考查學生分析問題、解決問題的能力和運算求解能力;屬于中檔題.20、(1);(2)【解析】試題分析:(1)求得的解集,根據集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉化為,設,求得函數的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設,則,所以當時,,所以.綜上,的取值范圍是.21、(1)平均數為360,眾數為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)將圖中甲公司員工A的所有數據相加,再除以總的天數10,即可求出甲公司員工A投遞快遞件數的平均數.從中發現330出現的次數最多,故為眾數;(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數學期望;(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數的平均數為.眾數為330.(2)設乙公司員工1天的投遞件數為隨機變量,則當時,當時,當時,當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CPFIA 0003-2022含礦物源黃腐酸鉀磷酸一銨
- T/CHES 117-2023城市河湖底泥污染狀況調查評價技術導則
- T/ZSX 4-2024社區社會組織培育發展導則
- 貸款延期還款協議書5篇
- 軟件園樓房改造vrv空調設備安裝合同4篇
- 05-12-27交通指示制作合同3篇
- 公司股權質押解除合同6篇
- 餐飲行業員工用工合同5篇
- 飲食店合同5篇
- 采購商品代理合同2篇
- 接處警規范化操作培訓體系
- 晚期胃癌護理
- 抗凝藥術前停用的指南
- 儲能集裝箱項目可行性研究報告(模板)
- 廢舊電纜采購合同協議
- 《2024 3573-T-424 重大活動食品安全保障規范 第 2 部分:食材》知識培訓
- 歐氏距離在地理信息系統中的應用-全面剖析
- 新版靜療規范解讀指南
- 2024年招聘輔導員的責任意識與服務能力測評試題及答案
- 主播行業研究報告
- 水利工程安全生產培訓
評論
0/150
提交評論