貴州省凱里市華鑫實驗校2024屆中考數學模擬預測題含解析_第1頁
貴州省凱里市華鑫實驗校2024屆中考數學模擬預測題含解析_第2頁
貴州省凱里市華鑫實驗校2024屆中考數學模擬預測題含解析_第3頁
貴州省凱里市華鑫實驗校2024屆中考數學模擬預測題含解析_第4頁
貴州省凱里市華鑫實驗校2024屆中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省凱里市華鑫實驗校2024屆中考數學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一元二次方程mx2+mx﹣=0有兩個相等實數根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.22.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.3.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°4.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.35.在2014年5月崇左市教育局舉行的“經典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數 B.中位數 C.平均數 D.方差6.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處7.﹣0.2的相反數是()A.0.2 B.±0.2 C.﹣0.2 D.28.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數為()A.40° B.60° C.80° D.100°9.關于x的一元二次方程x2-4x+k=0有兩個相等的實數根,則k的值是()A.2 B.-2 C.4 D.-410.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將△ABC繞點A逆時針旋轉100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.12.如圖,在x軸的正半軸上依次間隔相等的距離取點A1,A2,A3,A4,…,An,分別過這些點做x軸的垂線與反比例函數y=的圖象相交于點P1,P2,P3,P4,…Pn,再分別過P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.13.若關于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.14.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.15.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.16.若|a|=2016,則a=___________.17.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.19.(5分)為了促進學生多樣化發展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統計圖,請根據圖中提供的信息,完成下列問題:(1)此次共調查了多少人?(2)求文學社團在扇形統計圖中所占圓心角的度數;(3)請將條形統計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?20.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.21.(10分)解方程:(x﹣3)(x﹣2)﹣4=1.22.(10分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長.23.(12分)如圖,一次函數y=ax+b的圖象與反比例函數y=kx的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=12,OB=4,OE=2(1)求一次函數的解析式和反比例函數的解析式;(2)求△OCD的面積;(3)根據圖象直接寫出一次函數的值大于反比例函數的值時,自變量x的取值范圍.24.(14分)“六一”兒童節前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數進行抽樣統計,發現各班留守兒童人數分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)該校有_____個班級,補全條形統計圖;(2)求該校各班留守兒童人數數據的平均數,眾數與中位數;(3)若該鎮所有小學共有60個教學班,請根據樣本數據,估計該鎮小學生中,共有多少名留守兒童.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

由方程有兩個相等的實數根,得到根的判別式等于0,求出m的值,經檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數根;根的判別式的值等于0,方程有兩個相等的實數根;根的判別式的值小于0,方程沒有實數根.2、D【解析】

首先根據不等式的性質,解出x≤,由數軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.3、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點:圓周角定理4、B【解析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.5、B【解析】

解:11人成績的中位數是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數,比較即可.故選B.【點睛】本題考查統計量的選擇,掌握中位數的意義是本題的解題關鍵.6、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.7、A【解析】

根據相反數的定義進行解答即可.【詳解】負數的相反數是它的絕對值,所以﹣0.2的相反數是0.2.故選A.【點睛】本題主要考查相反數的定義,熟練掌握這個知識點是解題關鍵.8、D【解析】

根據兩直線平行,內錯角相等可得∠3=∠1,再根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質并準確識圖是解題的關鍵.9、C【解析】

對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式10、C【解析】

根據三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、40°【解析】

根據旋轉的性質可得出AB=AD、∠BAD=100°,再根據等腰三角形的性質可求出∠B的度數,此題得解.【詳解】根據旋轉的性質,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【點睛】本題考查了旋轉的性質以及等腰三角形的性質,根據旋轉的性質結合等腰三角形的性質求出∠B的度數是解題的關鍵.12、【解析】

解:設OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵當x=a時,,∴P1的坐標為(a,),當x=2a時,,∴P2的坐標為(2a,),……∴Rt△P1B1P2的面積為,Rt△P2B2P3的面積為,Rt△P3B3P4的面積為,……∴Rt△Pn-1Bn-1Pn的面積為.故答案為:13、m>-1【解析】

首先解關于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關于m的不等式,求得m的范圍.【詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【點睛】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關鍵是把m當作已知數表示出x+y的值,再得到關于m的不等式.14、【解析】

分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數.本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數,主要考查學生綜合運用定理進行推理和計算的能力.15、π﹣1【解析】

根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.16、±1【解析】試題分析:根據零指數冪的性質(),可知|a|=1,座椅可知a=±1.17、.【解析】

過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標為(,),將點C的坐標代入反比例函數解析式可得:,將點D的坐標代入反比例函數解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數圖象上點的坐標特征;2.等邊三角形的性質.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)AB=【解析】

(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=19、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據體育人數80人,占40%,可以求出總人數.(2)根據圓心角=百分比×360°即可解決問題.(3)求出藝術類、其它類社團人數,即可畫出條形圖.(4)用樣本百分比估計總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).

∴此次共調查200人.

(2)×360°=108°.∴文學社團在扇形統計圖中所占圓心角的度數為108°.

(3)補全如圖,(4)1500×40%=600(人).

∴估計該校喜歡體育類社團的學生有600人.【點睛】此題主要考查了條形圖與統計表以及扇形圖的綜合應用,由條形圖與扇形圖結合得出調查的總人數是解決問題的關鍵,學會用樣本估計總體的思想,屬于中考常考題型.20、(1)見解析;(2)2.【解析】

(1)根據相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據銳角三角函數和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【點睛】本題考查相似三角形的判定與性質、平行四邊形的性質、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答21、x1=,x2=【解析】試題分析:方程整理為一般形式,找出a,b,c的值,代入求根公式即可求出解.試題解析:解:方程化為,,,.>1..即,.22、證明見解析;.【解析】

根據兩組對邊分別平行的四邊形是平行四邊形即可證明;只要求出CD即可解決問題.【詳解】證明:、E分別是AB、AC的中點,又四邊形CDEF為平行四邊形.,,又為AB中點,在中,,,四邊形CDEF是平行四邊形,.【點睛】本題考查平行四邊形的判定和性質、勾股定理、三角形的中位線定理等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.23、(1)y=-12x+2,y=-6x【解析】試題分析:(1)根據已知條件求出A、B、C點坐標,用待定系數法求出直線AB和反比例函數的解析式;(2)聯立一次函數的解析式和反比例的函數解析式可得交點D的坐標,從而根據三角形面積公式求解;(3)根據函數的圖象和交點坐標即可求解.試題解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x軸于點E,tan∠ABO=OAOB=CEBE=12,∴OA=2,CE=3,∴點A的坐標為(0,2)、點B∵一次函數y=ax+b的圖象與x,y軸交于B,A兩點,∴4a+b=0b=2,解得:a=-故直線AB的解析式為y=-1∵反比例函數y=kx的圖象過C,∴3=k-2,∴k(2)聯立反比例函數的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論