廣東省深圳市深圳實驗學校初中部聯考2024年中考數學最后一模試卷含解析_第1頁
廣東省深圳市深圳實驗學校初中部聯考2024年中考數學最后一模試卷含解析_第2頁
廣東省深圳市深圳實驗學校初中部聯考2024年中考數學最后一模試卷含解析_第3頁
廣東省深圳市深圳實驗學校初中部聯考2024年中考數學最后一模試卷含解析_第4頁
廣東省深圳市深圳實驗學校初中部聯考2024年中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市深圳實驗學校初中部聯考2024年中考數學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數圖象大致為()A.B.C.D.2.某射擊選手10次射擊成績統計結果如下表,這10次成績的眾數、中位數分別是()成績(環)78910次數1432A.8、8 B.8、8.5 C.8、9 D.8、103.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.324.如圖,已知,為反比例函數圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.5.在武漢市舉辦的“讀好書、講禮儀”活動中,某學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統計圖,根據圖中信息,該班平均每人捐書的冊數是()A.3B.3.2C.4D.4.56.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數法表示應為()A. B. C. D.7.如圖,數軸上有三個點A、B、C,若點A、B表示的數互為相反數,則圖中點C對應的數是()A.﹣2 B.0 C.1 D.48.在△ABC中,AB=3,BC=4,AC=2,D,E,F分別為AB,BC,AC中點,連接DF,FE,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.119.如圖,在平面直角坐標系中,把△ABC繞原點O旋轉180°得到△CDA,點A,B,C的坐標分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)10.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.11.在一組數據:1,2,4,5中加入一個新數3之后,新數據與原數據相比,下列說法正確的是()A.中位數不變,方差不變 B.中位數變大,方差不變C.中位數變小,方差變小 D.中位數不變,方差變小12.下列計算正確的是()A.+= B.﹣= C.×=6 D.=4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當x________時,分式有意義.14.如圖,中,,,,將繞點逆時針旋轉至,使得點恰好落在上,與交于點,則的面積為_________.15.每年農歷五月初五為端午節,中國民間歷來有端午節吃粽子、賽龍舟的習俗.某班同學為了更好地了解某社區居民對鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對該社區居民進行了隨機抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).分析圖中信息,本次抽樣調查中喜愛小棗粽的人數為________;若該社區有10000人,估計愛吃鮮肉粽的人數約為________.16.將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣3,點B表示的數為2x+1,點C表示的數為﹣4,若將△ABC向右滾動,則x的值等于_____,數字2012對應的點將與△ABC的頂點_____重合.17.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.18.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點)15的處,則小明的影子的長為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在直角坐標系中△ABC的A、B、C三點坐標A(7,1)、B(8,2)、C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側),畫出△A′B′C′關于y軸對稱的△A′'B′'C′';(2)寫出點A'的坐標.20.(6分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.21.(6分)某校運動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.(1)求A、B兩種獎品的單價各是多少元?(2)學校計劃購買A、B兩種獎品共100件,且A種獎品的數量不大于B種獎品數量的3倍,設購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數關系式.請您確定當購買A種獎品多少件時,費用W的值最少.22.(8分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)23.(8分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.24.(10分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?25.(10分)如圖,某市郊外景區內一條筆直的公路a經過三個景點A、B、C,景區管委會又開發了風景優美的景點D,經測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結果精確到0.1km).求景點C與景點D之間的距離.(結果精確到1km).26.(12分)閱讀材料,解答下列問題:神奇的等式當a≠b時,一般來說會有a2+b≠a+b2,然而當a和b是特殊的分數時,這個等式卻是成立的例如:()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…(1)特例驗證:請再寫出一個具有上述特征的等式:;(2)猜想結論:用n(n為正整數)表示分數的分母,上述等式可表示為:;(3)證明推廣:①(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;②等式()2+=+()2(m,n為任意實數,且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數);若不成立,說明理由.27.(12分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.2、B【解析】

根據眾數和中位數的概念求解.【詳解】由表可知,8環出現次數最多,有4次,所以眾數為8環;這10個數據的中位數為第5、6個數據的平均數,即中位數為=8.5(環),故選:B.【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.3、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.4、D【解析】

求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【詳解】把,代入反比例函數,得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【點睛】本題考查了三角形的三邊關系定理和用待定系數法求一次函數的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.5、B【解析】七年級(1)班捐獻圖書的同學人數為9÷18%=50人,捐獻4冊的人數為50×30%=15人,捐獻3冊的人數為50-6-9-15-8=12人,所以該班平均每人捐書的冊數為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.6、C【解析】分析:在實際生活中,許多比較大的數,我們習慣上都用科學記數法表示,使書寫、計算簡便.解答:解:根據題意:2500000=2.5×1.故選C.7、C【解析】【分析】首先確定原點位置,進而可得C點對應的數.【詳解】∵點A、B表示的數互為相反數,AB=6∴原點在線段AB的中點處,點B對應的數為3,點A對應的數為-3,又∵BC=2,點C在點B的左邊,∴點C對應的數是1,故選C.【點睛】本題主要考查了數軸,關鍵是正確確定原點位置.8、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.9、A【解析】分析:依據四邊形ABCD是平行四邊形,即可得到BD經過點O,依據B的坐標為(﹣2,﹣2),即可得出D的坐標為(2,2).詳解:∵點A,C的坐標分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經過點O,∵B的坐標為(﹣2,﹣2),∴D的坐標為(2,2),故選A.點睛:本題主要考查了坐標與圖形變化,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.10、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.11、D【解析】

根據中位數和方差的定義分別計算出原數據和新數據的中位數和方差,從而做出判斷.【詳解】∵原數據的中位數是2+42=3,平均數為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數據的中位數為3,平均數為1+2+3+【點睛】本題考查了中位數和方差,解題的關鍵是掌握中位數和方差的定義.12、B【解析】

根據同類二次根式才能合并可對A進行判斷;根據二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≠3【解析】由題意得x-3≠0,∴x≠3.14、【解析】

首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關系求出CD、A′D即可解決問題.【詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,

∴∠A=60°,

∵△ABC繞點C逆時針旋轉至△A′B′C,使得點A′恰好落在AB上,

∴CA=CA′=2,∠CA′B′=∠A=60°,

∴△CAA′為等邊三角形,

∴∠ACA′=60°,

∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,

∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,

在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【點睛】本題考查了含30度的直角三角形三邊的關系,等邊三角形的判定和性質以及旋轉的性質,掌握旋轉的性質“對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等”是解題的關鍵.15、120人,3000人【解析】

根據B的人數除以占的百分比得到調查的總人數,再用總人數減去A、B、D的人數得到本次抽樣調查中喜愛小棗粽的人數;利用該社區的總人數×愛吃鮮肉粽的人數所占的百分比得出結果.【詳解】調查的總人數為:60÷10%=600(人),本次抽樣調查中喜愛小棗粽的人數為:600﹣180﹣60﹣240=120(人);若該社區有10000人,估計愛吃鮮肉粽的人數約為:100003000(人).故答案為120人;3000人.【點睛】本題考查了條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大?。部疾榱死脴颖竟烙嬁傮w.16、﹣1C.【解析】∵將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣1,點B表示的數為2x+1,點C表示的數為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數為:x﹣1=﹣1﹣1=﹣6,點B表示的數為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發到2012點滾動672周,∴數字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質,實數與數軸,一元一次方程等知識,本題將數與式的考查有機地融入“圖形與幾何”中,滲透“數形結合思想”、“方程思想”等,也是一道較優秀的操作活動型問題.17、【解析】

如圖,作OH⊥CD于H,連結OC,根據垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據含30°的直角三角形的性質計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質,解此題的關鍵在于作輔助線得到直角三角形,再合理利用各知識點進行計算即可18、1.【解析】

易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【詳解】解:根據題意,易得△MBA∽△MCO,

根據相似三角形的性質可知,即,

解得AM=1m.則小明的影長為1米.

故答案是:1.【點睛】本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)點A'的坐標為(-3,3)【解析】

解:(1),△A′'B′'C′'如圖所示.(2)點A'的坐標為(-3,3).20、(1)見解析;(2)62或3【解析】試題分析:(1)根據平行線的性質和中點的性質證明三角形全等,然后根據對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質,分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積21、(1)A、B兩種獎品的單價各是10元、15元;(2)W(元)與m(件)之間的函數關系式是W=﹣5m+1,當購買A種獎品75件時,費用W的值最少.【解析】

(1)設A種獎品的單價是x元、B種獎品的單價是y元,根據題意可以列出相應的方程組,從而可以求得A、B兩種獎品的單價各是多少元;(2)根據題意可以得到W(元)與m(件)之間的函數關系式,然后根據A種獎品的數量不大于B種獎品數量的3倍,可以求得m的取值范圍,再根據一次函數的性質即可解答本題.【詳解】(1)設A種獎品的單價是x元、B種獎品的單價是y元,根據題意得:解得:.答:A種獎品的單價是10元、B種獎品的單價是15元.(2)由題意可得:W=10m+15(100﹣m)=﹣5m+1.∵A種獎品的數量不大于B種獎品數量的3倍,∴m≤3(100﹣m),解得:m≤75∴當m=75時,W取得最小值,此時W=﹣5×75+1=2.答:W(元)與m(件)之間的函數關系式是W=﹣5m+1,當購買A種獎品75件時,費用W的值最少.【點睛】本題考查了一次函數的應用、二元一次方程組的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用一次函數的性質解答.22、(1)(2),圖形見解析.【解析】

(1)根據概率的定義即可求出;(2)先根據題意列出樹狀圖,再利用概率公式進行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹狀圖如下∴P(選中的男女主持人均為甲班的)=【點睛】此題主要考查概率的計算,解題的關鍵是根據題意列出樹狀圖進行求解.23、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.24、(1)2000;(2)2米【解析】

(1)設未知數,根據題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據題意得:﹣=4解得:x=2000,經檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.25、(1)景點D向公路a修建的這條公路的長約是3.1km;(2)景點C與景點D之間的距離約為4km.【解析】

解:(1)如圖,過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論