




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鹽城市大豐區第一共同體2024屆中考數學最后沖刺濃縮精華卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-102.去年12月24日全國大約有1230000人參加研究生招生考試,1230000這個數用科學記數法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1053.一次函數y=ax+b與反比例函數,其中ab<0,a、b為常數,它們在同一坐標系中的圖象可以是()A. B. C. D.4.下列運算結果為正數的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)5.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網絡上推出,即刻轉發量就超過810000這個數用科學記數法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1046.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>7.如果一組數據1、2、x、5、6的眾數是6,則這組數據的中位數是()A.1 B.2 C.5 D.68.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數為()A.80° B.70° C.60° D.50°9.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)10.甲、乙兩船從相距300km的A、B兩地同時出發相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=二、填空題(本大題共6個小題,每小題3分,共18分)11.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發時間x(時)的函數的圖象,請問當小明到達B地時,小亮距離A地_____千米.12.方程的解為.13.自2008年9月南水北調中線京石段應急供水工程通水以來,截至2018年5月8日5時52分,北京市累計接收河北四庫來水和丹江口水庫來水達50億立方米.已知丹江口水庫來水量比河北四庫來水量的2倍多1.82億立方米,求河北四庫來水量.設河北四庫來水量為x億立方米,依題意,可列一元一次方程為_____.14.如圖,AB∥CD,點E是CD上一點,∠AEC=40°,EF平分∠AED交AB于點F,則∠AFE=___度.15.如圖,四邊形ABCD是⊙O的內接四邊形,若∠BOD=88°,則∠BCD的度數是_________.16.如圖,矩形ABCD的對角線BD經過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O直徑,C為⊙O上一點,點D是的中點,DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關系,并證明你的結論;(2)若OF=4,求AC的長度.18.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).19.(8分)如圖,在△ABC中,BC=6,AB=AC,E,F分別為AB,AC上的點(E,F不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.20.(8分)計算:4cos30°﹣+20180+|1﹣|21.(8分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.22.(10分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業”“誠信”“友善”四個主題中選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數,隨機抽取了部分征文進行了調查,根據調查結果繪制成如下兩幅不完整的統計圖.(1)將上面的條形統計圖補充完整;(2)在扇形統計圖中,選擇“愛國”主題所對應的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學生有多少名?23.(12分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統計圖.類別頻數(人數)頻率小說0.5戲劇4散文100.25其他6合計1根據圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數分布表,并求出扇形統計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.24.對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據多項式乘以多項式的法則進行計算即可.【詳解】x-2x+5故選:C.【點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.2、A【解析】分析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:1230000這個數用科學記數法可以表示為故選A.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.3、C【解析】
根據一次函數的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項不正確;B.由一次函數圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數y=的圖象過二、四象限,所以此選項不正確;C.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項正確;D.由一次函數圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數的圖象,一次函數的圖象,解題關鍵在于確定a、b的大小4、B【解析】
分別根據有理數的加、減、乘、除運算法則計算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結果為負數;B、1﹣(﹣2)=1+2=3,結果為正數;C、1×(﹣2)=﹣1×2=﹣2,結果為負數;D、1÷(﹣2)=﹣1÷2=﹣,結果為負數;故選B.【點睛】本題主要考查有理數的混合運算,熟練掌握有理數的四則運算法則是解題的關鍵.5、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】810000=8.1×1.
故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、C【解析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.7、C【解析】分析:根據眾數的定義先求出x的值,再把數據按從小到大的順序排列,找出最中間的數,即可得出答案.詳解:∵數據1,2,x,5,6的眾數為6,∴x=6,把這些數從小到大排列為:1,2,5,6,6,最中間的數是5,則這組數據的中位數為5;故選C.點睛:本題考查了中位數的知識點,將一組數據按照從小到大的順序排列,如果數據的個數為奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數為偶數,則中間兩個數據的平均數就是這組數據的中位數.8、B【解析】
直接利用平行線的性質得出∠4的度數,再利用對頂角的性質得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質,正確得出∠4的度數是解題關鍵.9、A【解析】
直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.10、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數的應用,解題關鍵在于列出方程組.12、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經檢驗,是原方程的根.13、【解析】【分析】河北四庫來水量為x億立方米,根據等量關系:河北四庫來水和丹江口水庫來水達50億立方米,列方程即可得.【詳解】河北四庫來水量為x億立方米,則丹江口水庫來水量為(2x+1.82)億立方米,由題意得:x+(2x+1.82)=50,故答案為x+(2x+1.82)=50.【點睛】本題考查了一元一次方程的應用,弄清題意,找出等量關系列出方程是關鍵.14、70°.【解析】
由平角求出∠AED的度數,由角平分線得出∠DEF的度數,再由平行線的性質即可求出∠AFE的度數.【詳解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案為:70【點睛】本題考查的是平行線的性質以及角平分線的定義.熟練掌握平行線的性質,求出∠DEF的度數是解決問題的關鍵.15、136°.【解析】
由圓周角定理得,∠A=∠BOD=44°,由圓內接四邊形的性質得,∠BCD=180°-∠A=136°【點睛】本題考查了1.圓周角定理;2.圓內接四邊形的性質.16、1或﹣1【解析】
根據矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據反比例函數比例系數的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數k的幾何意義、矩形的性質、一元二次方程的解法,解題的關鍵是判斷出S四邊形CEOF=S四邊形HAGO.三、解答題(共8題,共72分)17、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點D是的中點,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據△ODF與△ABC相似,求得AC的長.AC=818、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,FM=MC.如圖③中,當FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關的性質、圓的內接正方形的性質和旋轉的性質;靈活利用全等三角形的性質;會利用面積的和差計算不規則幾何圖形的面積.19、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】
(1)先證明AE=AF,再根據折疊的性質得AE=A′E,AF=A′F,然后根據菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術平方根的定義求AE即可.【詳解】(1)四邊形AEA′F為菱形.理由如下:∵AB=AC,∴∠B=∠C,∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∵△AEF沿著直線EF向下翻折,得到△A′EF,∴AE=A′E,AF=A′F,∴AE=A′E=AF=A′F,∴四邊形AEA′F為菱形;(2)∵四邊形AEA′F是正方形,∴∠A=90°,∴△ABC為等腰直角三角形,∴AB=AC=BC=×6=6,∵正方形AEA′F的面積是△ABC的一半,∴AE2=??6?6,∴AE=1.【點睛】本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.20、【解析】
先代入三角函數值、化簡二次根式、計算零指數冪、取絕對值符號,再計算乘法,最后計算加減可得.【詳解】原式===【點睛】本題主要考查實數的混合運算,解題的關鍵是熟練掌握實數的混合運算順序和運算法則及零指數冪、絕對值和二次根式的性質.21、【解析】分析:化簡絕對值、0次冪和負指數冪,代入30°角的三角函數值,然后按照有理數的運算順序和法則進行計算即可.詳解:原式=+1﹣2×+=.點睛:本題考查了實數的運算,用到的知識點主要有絕對值、零指數冪和負指數冪,以及特殊角的三角函數值,熟記相關法則和性質是解決此題的關鍵.22、(1)條形統計圖如圖所示,見解析;(2)選擇“愛國”主題所對應的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學生有360名.【解析】
(1)根據誠信的人數和所占的百分比求出抽取的總人數,用總人數乘以友善所占的百分比,即可補全統計圖;(2)用360°乘以愛國所占的百分比,即可求出圓心角的度數;(3)用該校七年級的總人數乘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 CISPR PAS 39:2024 EN-FR Electromagnetic compatibility (EMC) - Conducted emission requirements on the low voltage AC mains port in the frequency range 9 kHz to 150 kHz for eq
- 2025至2030中國現場護理測試(POCT)行業產業運行態勢及投資規劃深度研究報告
- 2025至2030中國玉米油行業發展趨勢分析與未來投資戰略咨詢研究報告
- 家校聯結科技鋪路
- 智慧城市基礎設施的智能化運維策略
- 智慧城市公共空間LED照明的智能化管理
- 從文化交流角度看籃球教育的國際化
- 教育游戲化設計原則與挑戰共克
- 商業培訓中LMS的效果評估與案例分享
- 增強教育行業的數據保護能力與技術創新研究
- 網格員培訓完整資料課件
- 富馬酸奧賽利定注射液-藥品臨床應用解讀
- 2024IPv6 技術要求 第2部分:基于 IPv6 段路由(SRv6)的 IP 承載網絡
- 新標準日本語初級上冊第七課課練
- 部編初一語文閱讀理解最全答題模板與技巧+專項訓練練習題
- 弟子規注音A4直接打印版
- 金融學原理重點總結彭興韻
- 譯林版三年級英語上冊《全冊課件》ppt
- ma600學員座艙圖冊用戶培訓中心
- 液壓過濾器的設計和制造
- 《義務教育英語課程標準(2022年版)》自測題、綜合測試題、初中英語新課標過關抽測試卷及優秀答卷(共17套附答案)
評論
0/150
提交評論