湖南省祁東育英實驗學校2024年高三第二次調研數學試卷含解析_第1頁
湖南省祁東育英實驗學校2024年高三第二次調研數學試卷含解析_第2頁
湖南省祁東育英實驗學校2024年高三第二次調研數學試卷含解析_第3頁
湖南省祁東育英實驗學校2024年高三第二次調研數學試卷含解析_第4頁
湖南省祁東育英實驗學校2024年高三第二次調研數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省祁東育英實驗學校2024年高三第二次調研數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區間上是單調函數,則()A. B. C. D.2.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.3.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.4.已知滿足,則的取值范圍為()A. B. C. D.5.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-286.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.7.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.8.為比較甲、乙兩名高中學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為100分,分值高者為優),根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述不正確的是()A.甲的數據分析素養優于乙 B.乙的數據分析素養優于數學建模素養C.甲的六大素養整體水平優于乙 D.甲的六大素養中數學運算最強9.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.10.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且11.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個12.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知,則__________.14.已知是定義在上的偶函數,其導函數為.若時,,則不等式的解集是___________.15.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.16.若,且,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解不等式;(2)若函數的最小值為,求的最小值.18.(12分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.19.(12分)如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標為,求的值.20.(12分)已知等差數列滿足,.(l)求等差數列的通項公式;(2)設,求數列的前項和.21.(12分)已知正實數滿足.(1)求的最小值.(2)證明:22.(10分)已知函數有兩個零點.(1)求的取值范圍;(2)是否存在實數,對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.2、B【解析】

分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內,如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.3、A【解析】

根據三視圖可得幾何體為直三棱柱,根據三視圖中的數據直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.4、C【解析】

設,則的幾何意義為點到點的斜率,利用數形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規劃的非線性目標函數函數問題,解題時作出可行域,利用目標函數的幾何意義求解是解題關鍵.對于直線斜率要注意斜率不存在的直線是否存在.5、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.6、A【解析】

先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.7、C【解析】

首先根據垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據長度關系可構造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球球心的位置.8、D【解析】

根據所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數據分析素養為100分,乙的數據分析素養為80分,故甲的數據分析素養優于乙,故A正確;對于B,乙的數據分析素養為80分,數學建模素養為60分,故乙的數據分析素養優于數學建模素養,故B正確;對于C,甲的六大素養整體水平平均得分為,乙的六大素養整體水平均得分為,故C正確;對于D,甲的六大素養中數學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數據的特征、平均數的計算,考查了學生的數據處理能力,屬于基礎題.9、B【解析】

設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.10、B【解析】由且可得,故選B.11、B【解析】

根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.12、D【解析】

先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解:由題意可知:.14、【解析】

構造,先利用定義判斷的奇偶性,再利用導數判斷其單調性,轉化為,結合奇偶性,單調性求解不等式即可.【詳解】令,則是上的偶函數,,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數的奇偶性、單調性解不等式,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.15、10【解析】

先求出a,b,根據分層抽樣的比例引入正整數k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數量、每層樣本數量的計算,屬于基礎題.16、8【解析】

利用的代換,將寫成,然后根據基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當時,,即,此時無解;當時,;當時,.所求不等式的解集為(2)分析知,函數的最小值為4,當且僅當時等號成立.的最小值為4.【點睛】本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.18、(1)證明見解析(2)【解析】

(1)連接,交與,連接,由,得出結論;(2)以為原點,,,分別為,,軸建立空間直角坐標系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點,,,分別為,,軸建立空間直角坐標系,,,,,,,設平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)(2)【解析】

(1)依題意,任意角的三角函數的定義可知,,進而求出.在利用余弦的和差公式即可求出.(2)根據鈍角的終邊與單位圓交于點,且點的橫坐標是,得出,進而得出,利用正弦的和差公式即可求出,結合為銳角,為鈍角,即可得出的值.【詳解】解:因為銳角的終邊與單位圓交于點,點的縱坐標是,所以由任意角的三角函數的定義可知,.從而.(1)于是.(2)因為鈍角的終邊與單位圓交于點,且點的橫坐標是,所以,從而.于是.因為為銳角,為鈍角,所以從而.【點睛】本題本題考查正弦函數余弦函數的定義,考查正弦余弦的兩角和差公式,是基礎題.20、(1);(2).【解析】試題分析:(1)設等差數列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設等差數列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.21、(1);(2)見解析【解析】

(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.22、(1);(2).【解析】

(1)對求導,對參數進行分類討論,根據函數單調性即可求得.(2)先根據,得,再根據零點解得,轉化不等式得,令,化簡得,因此,,最后根據導數研究對應函數單調性,確定對應函數最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論