2024屆甘肅省武威市第一中學高考考前提分數學仿真卷含解析_第1頁
2024屆甘肅省武威市第一中學高考考前提分數學仿真卷含解析_第2頁
2024屆甘肅省武威市第一中學高考考前提分數學仿真卷含解析_第3頁
2024屆甘肅省武威市第一中學高考考前提分數學仿真卷含解析_第4頁
2024屆甘肅省武威市第一中學高考考前提分數學仿真卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆甘肅省武威市第一中學高考考前提分數學仿真卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.2.若復數,則()A. B. C. D.203.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.4.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁5.已知Sn為等比數列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣856.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.如圖,平面四邊形中,,,,為等邊三角形,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.9.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.10.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.11.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.12.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.282二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,常數項為________.(用數字作答)14.函數在上的最小值和最大值分別是_____________.15.如圖,在三棱錐中,平面,,已知,,則當最大時,三棱錐的體積為__________.16.若函數,則使得不等式成立的的取值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.18.(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.19.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.20.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.21.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數據:)22.(10分)唐詩是中國文學的瑰寶.為了研究計算機上唐詩分類工作中檢索關鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統計了每個類別及各類別包含“花”、“山”、“簾”字的篇數,得到下表:愛情婚姻詠史懷古邊塞戰爭山水田園交游送別羈旅思鄉其他總計篇數100645599917318500含“山”字的篇數5148216948304271含“簾”字的篇數2120073538含“花”字的篇數606141732283160(1)根據上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;(2)已知檢索關鍵字的選取規則為:①若有超過95%的把握判斷“某字”與“某類別”有關系,則“某字”為“某類別”的關鍵字;②若“某字”被選為“某類別”關鍵字,則由其對應列聯表得到的的觀測值越大,排名就越靠前;設“山”“簾”“花”和“愛情婚姻”對應的觀測值分別為,,.已知,,請完成下面列聯表,并從上述三個字中選出“愛情婚姻”類別的關鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計含“花”字的篇數不含“花”的篇數總計附:,其中.0.050.0250.0103.8415.0246.635

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.2、B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數的運算,復數的模,意在考查學生的計算能力.3、A【解析】

畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.4、C【解析】

分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發,推理出矛盾的結論,說明這種情形不會發生,考查了分析能力和推理能力,屬于中檔題.5、D【解析】

由等比數列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據等比數列的前n項和公式解答即可.【詳解】設等比數列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數列的前n項和,根據等比數列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.6、A【解析】

根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.7、C【解析】

根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.8、A【解析】

將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數學運算的能力,屬于較難題.9、A【解析】

利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.10、D【解析】

設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.11、D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數,再得到甲第一個到、丙第三個到的基本事件的種數,利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.12、B【解析】

將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.14、【解析】

求導,研究函數單調性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數在函數最值的求解中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題15、4【解析】設,則,,,,當且僅當,即時,等號成立.,故答案為416、【解析】

分,兩種情況代入討論即可求解.【詳解】,當時,,符合;當時,,不滿足.故答案為:【點睛】本題主要考查了分段函數的計算,考查了分類討論的思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.【點睛】本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.18、(1);(2)見解析【解析】

(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設軸上存在點,是以為直角頂點的等腰直角三角形,設,,線段的中點為,根據韋達定理求出點的坐標,再根據,,即可求出的值,可得點的坐標.【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設軸上存在點,是以為直角頂點的等腰直角三角形設,,線段的中點為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當時,點滿足題意;當時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形【點睛】本題考查了橢圓的方程,直線和橢圓的位置關系,斜率公式,考查了運算能力和轉化能力,屬于中檔題.19、(1)(2).【解析】

(1)利用離心率和橢圓經過的點建立方程組,求解即可.(2)把面積之比轉化為縱坐標之間的關系,聯立方程結合韋達定理可求.【詳解】解:(1)設焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數法,建立方程組進行求解,面積問題的合理轉化是求解的關鍵,側重考查數學運算的核心素養.20、(1)見解析;(2)【解析】

(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養和向量法的合理運用,屬于中檔題.21、(1);(2)證明見解析.【解析】

(1)求出函數的定義域為,,分和兩種情況討論,分析函數的單調性,求出函數的最大值,即可得出關于實數的不等式,進而可求得實數的取值范圍;(2)利用導數分析出函數在上遞增,在上遞減,可得出,由,構造函數,證明出,進而得出,再由函數在區間上的單調性可證得結論.【詳解】(1)函數的定義域為,且.當時,對任意的,,此時函數在上為增函數,函數為最大值;當時,令,得.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得極大值,亦即最大值,即,解得.綜上所述,實數的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數的單調遞增區間為,單調遞減區間為.由于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論