




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
文檔來源為:從網絡收集整理.word版本可編輯.歡迎下載支持.文檔來源為:從網絡收集整理.word版本可編輯.歡迎下載支持.文檔來源為:從網絡收集整理.word版本可編輯.歡迎下載支持.【關鍵字】建筑高層建筑與鋼結構外文文獻翻譯(含:英文原文及中文譯文)文獻出處:StructuralEngineerJournaloftheInstitutionofStructuralEngineer,2014,92,pp:26-29.英文原文TallingbuildingandSteelconstructionCollins
MarkAlthoughtherehavebeenmanyadvancementsinbuildingconstructiontechnologyingeneral.Spectacularachievementshavebeenmadeinthedesignandconstructionofultrahigh-risebuildings.Theearlydevelopmentofhigh-risebuildingsbeganwithstructuralsteelfraing.Reinforcedconcreteandstressed-skintubesystemshavesincebeeneconomicallyandcompetitivelyusedinanumberofstructuresforbothresidentialandcommercialpurposes.Thehigh-risebuildingsrangingfrom50to110storiesthatarebeingbuiltalloverthearetheresultofinnovationsanddevelopmentofnewstructuralsystems.Greaterheightentailsincreasedcolumnandbeamsizestomakebuildingsmorerigidsothatunderwindloadtheywillnotswaybeyondanacceptablelimit.Excessivelateralswaymaycauseseriousrecurringdamagetopartitions,ceilings.andotherarchitecturaldetails.Inaddition,excessiveswaymaycausediscomforttotheoccupantsofthebuildingbecausetheir
perceptionofsuchmotion.Structuralsystemsofreinforcedconcrete,aswellassteel,takefulladvantageofinherentpotentialstiffnessofthetotalbuildingandthereforerequireadditionalstiffeningtolimitthesway.Inasteelstructure,forexample,theeconomycanbedefinedintermsofthetotalaveragequantityofsteelpersquarefootoffloorareaofthebuilding.CurveAinFig.1representstheaverageunitweightofaconventionalframewithincreasingnumbersofstories.CurveBrepresentstheaveragesteelweightiftheframeisprotectedfromalllateralloads.Thegapbetweentheupperboundaryandthelowerboundaryrepresentsthepremiumforheightforthetraditionalcolumn-and-beamframe.Structuralengineershavedevelopedstructuralsystemswithaviewtoeliminatingthispremium.Systemsinsteel.Tallbuildingsinsteeldevelopedasaresultofseveraltypesofstructuralinnovations.Theinnovationshavebeenappliedtotheconstructionofbothofficeandapartmentbuildings.Framewithrigidbelttrusses.Inordertotietheexteriorcolumnsofaframestructuretotheinteriorverticaltrusses,asystemofrigidbelttrussesatmid-heightandatthetopofthebuildingmaybeused.Agoodexampleofthissystemisthe(1974)in.Framedtube.Themaximumefficiencyofthetotalstructureofatallbuilding,forbothstrengthandstiffness,toresistwindloadcanbeachievedonlyifallcolumnelementcanbeconnectedtoeachotherinsuchawaythattheentirebuildingactsasahollowtubeorrigidboxinprojectingoutoftheground.Thisparticularstructuralsystemwasprobablyusedforthefirsttimeinthe43-storyreinforcedconcreteDeWittChestnutApartmentBuildingin.Themostsignificantuseofthissystemisinthetwinstructuralsteeltowersofthe110-storybuildinginColumn-diagonaltrusstube.Theexteriorcolumnsofabuildingcanbespacedreasonablyfarapartandyetbemadetoworktogetherasatubebyconnectingthemwithdiagonalmembersinterestingatthecentrelineofthecolumnsandbeams.ThissimpleyetextremelyefficientsystemwasusedforthefirsttimeontheJohnHancockCentrein,usingasmuchsteelasisnormallyneededforatraditional40-storybuilding.Bundledtube.Withthecontinuingneedforlargerandtallerbuildings,theframedtubeorthecolumn-diagonaltrusstubemaybeusedinabundledformtocreatelargertubeenvelopeswhilemaintaininghighefficiency.The110-storyinhasninetube,bundledatthebaseofthebuildinginthreerows.Someoftheseindividualtubesterminateatdifferentheightsofthebuilding,demonstratingtheunlimitedarchitecturalpossibilitiesofthislateststructuralconcept.TheSearstower,ataheightof(),istheworld’stallestbuilding.Stressed-skintubesystem.Thetubestructuralsystemwasdevelopedforimprovingtheresistancetolateralforces(windandearthquake)andthecontrolofdrift(lateralbuildingmovement)inhigh-risebuilding.Thestressed-skintubetakesthetubesystemastepfurther.Thedevelopmentofthestressed-skintubeutilizesthefa?adeofthebuildingasastructuralelementwhichactswiththeframedtube,thusprovidinganefficientwayofresistinglateralloadsinhigh-risebuildings,andresultingincost-effectivecolumn-freeinteriorspacewithahighratioofnettogrossfloorarea.Becauseofthecontributionofthestressed-skinfa?ade,theframedmembersofthetuberequirelessmass,andarethuslighterandlessexpensive.Allthetypicalcolumnsandspandrelbeamsarestandardrolledshapes,minimizingtheuseandcostofspecialbuilt-upmembers.Thedepthrequirementfortheperimeterspandrelbeamsisalsoreduced,andtheneedforupsetbeamsabovefloors,whichwouldencroachonvaluablespace,isminimized.Thestructuralsystemhasbeenusedonthe54-storyinPittburgh.Systemsinconcrete.Whiletallbuildingsconstructedofsteelhadanearlystart,developmentoftallbuildingsofreinforcedconcreteprogressedatafastenoughratetoprovideacompetitivechanllengetostructuralsteelsystemsforbothofficeandapartmentbuildings.Framedtube.Asdiscussedabove,thefirstframedtubeconceptfortallbuildingswasusedforthe43-storyDeWittChestnutApartmentBuilding.Inthisbuilding,exteriorcolumnswerespacedat()centers,andinteriorcolumnswereusedasneededtosupportthe8-in.-thick(20-m)flat-plateconcreteslabs.Tubeintube.Anothersysteminreinforcedconcreteforofficebuildingscombinesthetraditionalshearwallconstructionwithanexteriorframedtube.Thesystemconsistsofanouterframedtubeofverycloselyspacedcolumnsandaninteriorrigidshearwalltubeenclosingthecentralservicearea.Thesystem(Fig.2),knownasthetube-in-tubesystem,madeitpossibletodesigntheworld’spresenttallest(or)lightweightconcretebuilding(the52-storyOneShellPlazaBuildinginHouston)fortheunitpriceofatraditionalshearwallstructureofonly35stories.Systemscombiningbothconcreteandsteelhavealsobeendeveloped,anexamleofwhichisthecompositesystemdevelopedbyskidmore,Owings&Merrilinwhichanexteriorcloselyspacedframedtubeinconcreteenvelopsaninteriorsteelframing,therebycombiningtheadvantagesofbothreinforcedconcreteandstructuralsteelsystems.The52-storyinisbasedonthissystem.Steelconstructionreferstoabroadrangeofbuildingconstructioninwhichsteelplaystheleadingrole.Moststeelconstructionconsistsoflarge-scalebuildingsorengineeringworks,withthesteelgenerallyintheformofbeams,girders,bars,plates,andothermembersshapedthroughthehot-rolledprocess.Despitetheincreaseduseofothermaterials,steelconstructionremainedamajoroutletforthesteelindustriesoftheU.S,U.K,,,WestGerman,,andothersteelproducersinthe1970s.Earlyhistory.ThehistoryofsteelconstructionbeginsparadoxicallyseveraldecadesbeforetheintroductionoftheandtheSiemens-Martin(openj-hearth)processesmadeitpossibletoproducesteelinquantitiessufficientforstructureuse.Manyofproblemsofsteelconstructionwerestudiedearlierinconnectionwithironconstruction,whichbeganwiththe,builtincastironovertheSevernRiverinin1777.Thisandsubsequentironbridgework,inadditiontotheconstructionofsteamboilersandironshiphulls,spurredthedevelopmentoftechniquesforfabricating,designing,andjioning.Theadvantagesofironovermasonrylayinthemuchsmalleramountsofmaterialrequired.Thetrussform,basedontheresistanceofthetriangletodeformation,longusedintimber,wastranslatedeffectivelyintoiron,withcastironbeingusedforcompressionmembers-i.e,thosebearingtheweightofdirectloading-andwroughtironbeingusedfortensionmembers-i.e,thosebearingthepullofsuspendedloading.Thetechniqueforpassingiron,heatedtotheplasticstate,betweenrollstoformflatandroundedbars,wasdevelopedasearlyas1800;by1819angleironswererolled;andin1849thefirstIbeams,17.7feet()long,werefabricatedasroofgirdersforaParisrailroadstation.TwoyearslaterJosephPaxtonofbuiltthefortheLondonExpositionof1851.Heissaidtohaveconceivedtheideaofcageconstruction-usingrelativelyslenderironbeamsasaskeletonfortheglasswallsofalarge,openstructure.Resistancetowindforcesinthepalacewasprovidedbydiagonalironrods.Twofeatureareparticularlyimportantinthehistoryofmetalconstruction;first,theuseoflatticedgirder,whicharesmalltrusses,aformfirstdevelopedintimberbridgesandotherstructuresandtranslatedintometalbyPaxton;andsecond,thejoiningofwrought-irontensionmembersandcast-ironcompressionmembersbymeansofrivetsinsertedwhilehot.In1853thefirstmetalfloorbeamswererolledforthein.Inthelightoftheprincipalmarketdemandforironbeamsatthetime,itisnotsurprisingthattheCooperUnionbeamscloselyresembledrailroadrails.ThedevelopmentoftheBessemerandSiemens-Martinprocessesinthe1850sand1860ssuddenlyopenthewaytotheuseofsteelforstructuralpurpose.Strongerthanironinbothtensionandcompression,thenewlyavailablemetalwasseizedonbyimaginativeengineers,notablybythoseinvolvedinbuildingthegreatnumberofheavyrailroadbridgesthenindemandinBritain,Europe,andtheU.S.Anotableexamplewasthe,alsoknownasthe,in(1867-1874),inwhichtubularsteelribswereusedtoformarcheswithaspanofmorethan().In,theFirthofForthcantileverbridge(1883-90)employedtubularstruts,some()indiameterand()long.Suchbridgesandotherstructureswereimportantinleadingtothedevelopmentandenforcementofstandardsandcodificationofpermissibledesignstresses.Thelackofadequatetheoreticalknowledge,andevenofanadequatebasisfortheoreticalstudies,limitedthevalueofstressanalysisduringtheearlyyearsofthe20thcentury,asiccasionallyfailures,suchasthatofacantileverbridgeinQuebecin1907,revealed.Butfailureswererareinthemetal-skeletonofficebuildings;thesimplicityoftheirdesignprovedhighlypracticalevenintheabsenceofsophisticatedanalysistechniques.Throughoutthefirstthirdofthecentury,ordinarycarbonsteel,withoutanyspecialalloystrengtheningorhardening,wasuniversallyused.Thepossibilitiesinherentinmetalconstructionforhigh-risebuildingwasdemonstratedtotheworldbytheParisExpositionof1889.forwhichAlexandre-GustaveEiffel,aleadingFrench
bridgeengineer,erectedanopenworkmetaltower()high.Notonlywastheheight-morethandoublethatoftheGreatPyramid-remarkable,butthespeedoferectionandlowcostwereevenmoreso,asmallcrewcompletedtheworkinafewmonths.Thefirstskyscrapers.Meantime,intheanotherimportantdevelopmentwastakingplace.In1884-85Maj.WilliamLeBaronJenney,aengineer,haddesignedthe,tenstorieshigh,withametalskeleton.Jenney’sbeamswereofsteel,thoughhiscolumnswerecastiron.Castironlintelssupportingmasonryoverwindowopeningswere,inturn,supportedonthecastironcolumns.Soildmasonrycourtandpartywallsprovidedlateralsupportagainstwindloading.Withinadecadethesametypeofconstructionhadbeenusedinmorethan30officebuildingsinand.Steelplayedalargerandlargerroleinthese,withrivetedconnectionsforbeamsandcolumns,sometimesstrengthenedforwindbracingbyoverlayinggussetplatesatthejunctionofverticalandhorizontalmembers.Lightmasonrycurtainwalls,supportedateachfloorlevel,replacedtheoldheavymasonrycurtainwalls,supportedateachfloorlevel,replacedtheoldheavymasonry.Thoughthenewconstructionformwastoremaincentredalmostentirelyinforseveraldecade,itsimpactonthesteelindustrywasworldwide.Bythelastyearsofthe19thcentury,thebasicstructuralshapes-Ibeamsupto.()indepthandZandTshapesoflesserproportionswerereadilyavailable,tocombinewithplatesofseveralwidthsandthicknessestomakeefficientmembersofanyrequiredsizeandstrength.In1885theheavieststructuralshapeproducedthroughhot-rollingweighedlessthan100pounds(45kilograms)perfoot;decadebydecadethisfigureroseuntilinthe1960sitexceeded700pounds(320kilograms)perfoot.CoincidentwiththeintroductionofstructuralsteelcametheintroductionoftheOtiselectricelevatorin1889.Thedemonstrationofasafepassengerelevator,togetherwiththatofasafeandeconomicalsteelconstructionmethod,sentbuildingheightssoaring.InNewYorkthe286-ft(87.2-m)FlatironBuildingof1902wassurpassedin1904bythe375-ft(115-m)TimesBuilding(renamedtheAlliedChemicalBuilding),the468-ft(143-m)CityInvestingCompanyBuildinginWallStreet,the612-ft(187-m)SingerBuilding(1908),the700-ft(214-m)MetropolitanTower(1909)and,in1913,the780-ft(232-m)WoolworthBuilding.Therapidincreaseinheightandtheheight-to-widthratiobroughtproblems.Tolimitstreetcongestion,buildingsetbackdesignwasprescribed.Onthetechnicalside,theproblemoflateral
supportwasstudied.Adiagonalbracingsystem,suchasthatusedinthe,wasnotarchitecturallydesirableinofficesrelyingonsunlightforillumination.Theanswerwasfoundingreaterrelianceonthebendingresistanceofcertainindividualbeamsandcolumnsstrategicallydesignedintotheskeletnframe,togetherwithahighdegreeofrigiditysoughtatthejunctionofthebeamsandcolumns.Withtoday’smoderninteriorlightingsystems,however,diagonalbracingagainstwindloadshasreturned;onenotableexampleisthein,wheretheexternalX-bracesformadramaticpartofthestructure’sfa?ade.WorldWarIbroughtaninterruptiontotheboominwhathadcometobecalledskyscrapers(theoriginofthewordisuncertain),butinthe1920sNewYorksawaresumptionoftheheightrace,culminatingintheEmpireStateBuildinginthe1931.The’s102stories(.[])weretokeepitestablishedasthehightestbuildingintheworldforthenext40years.Itsspeedoftheerectiondemonstratedhowthoroughlythenewconstructiontechniquehadbeenmastered.Adepotacrossthebayat,suppliedthegirdersbylighterandtruckonascheduleoperatedwithmillitaryprecision;ninederrickspowerdebyelectrichoistsliftedthegirderstoposition;anindustrial-railwaysetupmovedsteelandothermaterialoneachfloor.Initialconnectionsweremadebybolting,closelyfollowedbyriveting,followedbymasonryandfinishing.Theentirejobwascompletedinoneyearand45days.Theworldwidedepressionofthe1930sandWorldWarIIprovidedanotherinterruptiontosteelconstructiondevelopment,butatthesametimetheintroductionofweldingtoreplacerivetingprovidedanimportantadvance.Joiningofsteelpartsbymetalareweldinghadbeensuccessfullyachievedbytheendofthe19thcenturyandwasusedinemergencyshiprepairsduringWorldWarI,butitsapplicationtoconstructionwaslimiteduntilafterWorldWarII.Anotheradvanceinthesameareahadbeentheintroductionofhigh-strengthboltstoreplacerivetsinfieldconnections.SincethecloseofWorldWarII,researchinEurope,the,andhasgreatlyextendedknowledgeofthebehaviorofdifferenttypesofstructuralsteelundervaryingstresses,includingthoseexceedingtheyieldpoint,makingpossiblemorerefinedandsystematicanalysis.Thisinturnhasledtotheadoptionofmoreliberaldesigncodesinmostcountries,moreimaginativedesignmadepossiblebyso-calledplasticdesign?Theintroductionofthecomputerbyshort-cuttingtediouspaperwork,madefurtheradvancesandsavingspossible.中文譯文高層結構與鋼結構作者:Collins
Mark近年來,盡管一般的建筑結構設計取得了很大的進步,但是取得顯著成績的還要屬超高層建筑結構設計。最初的高層建筑設計是從鋼結構的設計開始的。鋼筋混凝土和受力外包鋼筒系統運用起來是比較經濟的系統,被有效地運用于大批的民用建筑和商業建筑中。50層到100層的建筑被定義為超高層建筑。而這種建筑在美國的廣泛應用是由于新的結構系統的發展和創新。更高的高度需要增加柱和梁的尺寸,以使建筑物更加堅硬,以便在風荷載下它們不會超出可接受的極限。過度的側向搖擺可能會對隔板,天花板造成嚴重的反復損壞。和其他建筑細節。此外,過度搖擺可能會導致建筑物的居住者感到不適,因為他們對這種運動的感知。鋼筋混凝土和鋼結構系統充分利用了整個建筑物固有的潛在剛度,因此需要額外的加強來限制擺動。例如,在鋼結構中,經濟可以用建筑物每平方英尺建筑面積的平均鋼材總量來定義。圖1中的曲線A表示隨著故事數量增加的保守框架的平均單位重量。曲線B表示框架受到所有側向載荷的保護時的平均鋼重量。上邊界和下邊界之間的差距代表了保守的柱-梁框架的高度溢價。結構工程師已經開發了結構系統以消除這種溢價。鋼鐵系統。鋼鐵中的高層建筑是由于幾種結構創新而發展起來的。這些創新已被應用于辦公樓和公寓樓的建設。帶有剛性帶桁架的框架。為了將框架結構的外部柱與內部垂直桁架相連,可以使用在建筑物中部和建筑物頂部的剛性帶桁架系統。這個系統的一個很好的例子是密爾沃基的第一威斯康辛銀行大樓(1974)。框架管。只有當所有的柱式構件可以相互連接時,才能達到抵抗風荷載的高層建筑的整體結構的最大效率,以使整個建筑物起中空管的作用,或者堅硬的箱子伸出地面。這種特殊的結構系統可能首次在芝加哥的43層鋼筋混凝土DeWittChestnut公寓大樓中使用。這個系統最重要的用途是紐約110層的世界貿易中心大樓的雙層結構鋼塔柱對角桁架管。建筑物的外部柱子可以相距很遠,但是可以通過將它們與在柱和梁的中心線處有趣的對角線成員連接在一起而制成管。這個簡單卻非常高效的系統首次在芝加哥的約翰漢考克中心使用,使用的鋼材與保守40層建筑通常所需的一樣多。捆綁管。隨著對更大和更高建筑物的持續需求,框架管或柱對角桁架管可以以捆綁形式使用,以在保持高效率的同時形成更大的管封套。芝加哥的西爾斯羅巴克總部大樓110層有9根管子,捆綁在建筑物底部三排。其中一些獨立管終止于建筑物的不同高度,展示了這種最新結構概念的無限建筑可能性。西爾斯大廈高(),是世界上最高的建筑。應力皮膚管系統。為了提高高層建筑的抗側向力(風和地震)和控制漂移(側向建筑物運動),開發了管道結構系統。應力表皮管使管系更進一步。應力蒙皮管的開發利用建筑物的外墻作為與框架管作用的結構元件,從而提供抵抗高層建筑物中的側向載荷的有效方式,并且導致經濟高效的無柱內部凈面積與建筑面積之比高的空間。由于應力皮膚立面的貢獻,管的框架構件需要較少的質量,因此較輕且較便宜。所有典型的立柱和拱肩梁都是標準的卷形,最大限度地減少了特殊組合構件的使用和成本。外圍伸縮梁的深度要求也降低了,并且需要高于地面的鐓粗的梁,這會侵占有價值的空間,因此被最小化。該結構系統已用于匹茲堡54層的梅隆銀行中心。混凝土系統。雖然鋼鐵建造的高層建筑起步較早,但鋼筋混凝土高層建筑的發展速度非常快,為辦公樓和公寓建筑的結構鋼系統提供了競爭激烈的挑戰。框架管。如上所述,高層建筑的第一個框架管理概念被用于43層DeWittChestnut公寓大樓。在這座建筑物中,外部柱子的間距為5.5英尺(1.68米),并且根據需要使用內部柱子來支撐8英寸。管內管。辦公大樓鋼筋混凝土的另一個系統將傳統的剪力墻結構與外部框架管相結合。該系統由一個非常緊密間隔的柱的外框架管和一個圍繞中央服務區的內部剛性剪力墻管組成。該系統(圖2)被稱為管中管系統,可以為該裝置設計世界上目前最高的(714英尺或218米)輕質混凝土建筑(休斯頓的52層OneShellPlazaBuilding)只有同時開發了混凝土和鋼結合的系統,其中一個實例是Skidmore開發的復合系統Owings&Merril,其中混凝土外部緊密間隔的框架管包裹著內部鋼框架,從而結合了鋼筋混凝土和結構鋼系統。新奧爾良的52層的OneShellSquare建筑基于這個系統。鋼結構是指以鋼鐵為主導的廣泛建筑結構。大多數鋼鐵建筑由大型建筑或工程工程組成,鋼材通常采用橫梁,桁材,棒材,板材和其他通過熱軋工藝成型的構件。盡管其他材料的使用增加,鋼鐵建筑仍然是美國,英國,美國,日本,西德,法國和其他鋼鐵生產商在上世紀70年代鋼鐵行業的主要出口。早期歷史。在引進Bessemer和西門子-馬丁(openj-hearth)工藝之前的幾十年,鋼結構的歷史開始出現矛盾,這使得生產足夠數量的鋼材成為可能。早些時候對鋼結構的許多問題進行了研究,涉及鐵建設,該建設始于1777年在英格蘭的塞文河上鑄鐵鑄造的Coalbrookdale橋。這個和隨后的鐵橋工程除了建造蒸汽鍋爐和鐵船體,促進了制造,設計和制動技術的發展。鐵在磚石上的優勢在于所需材料的數量少得多。基于長期用于木材的三角形對變形的阻力,桁架形式被有效地轉化為鐵,其中鑄鐵被用于壓縮構件-即承受直接負荷重量的構件-和鍛鐵被用于受拉構件-即承受懸吊載荷拉力的構件。早在1800年就開發了在軋輥之間加熱到塑性狀態以形成扁平圓棒的技術,1819年開發了角鐵,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年彩色噴墨打印材料項目申請報告
- 多媒體設計師考試全面介紹試題及答案
- 系統集成工程師考試路徑解析試題及答案
- 2025勞動合同終止用人單位不續約
- 中級社會工作者考試技巧試題及答案
- 圍網養魚面試題及答案
- 河南地礦考試題庫及答案
- 高考四川文綜試題及答案
- 網絡規劃設計師職業發展展望試題及答案
- 初級社工應對社會工作復雜性的能力試題及答案
- 微信解除保全申請書
- 中國電子鼻行業發展環境、市場運行格局及投資前景研究報告(2025版)
- 2025年濟南鐵路局招聘筆試參考題庫含答案解析
- 《資本論解讀》課件
- 《聲學構造》課件
- JJF(黔) 86-2024 液體流量計在線校準規范
- 《中華優傳統文化》課程標準
- 建設法規考試題及答案期末考試
- 華東師范大學《植被生態學》2022-2023學年第一學期期末試卷
- 農藥包裝廢棄物回收處理管理辦法解讀
- 道路工程質量通病防治監理細則
評論
0/150
提交評論