2024屆四川省遂寧市大英縣中考一模數學試題含解析_第1頁
2024屆四川省遂寧市大英縣中考一模數學試題含解析_第2頁
2024屆四川省遂寧市大英縣中考一模數學試題含解析_第3頁
2024屆四川省遂寧市大英縣中考一模數學試題含解析_第4頁
2024屆四川省遂寧市大英縣中考一模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省遂寧市大英縣中考一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有6個相同的立方體搭成的幾何體如圖所示,則它的主視圖是()A. B. C. D.2.在同一直角坐標系中,函數y=kx-k與(k≠0)的圖象大致是()A. B.C. D.3.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.64.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.95.在下列函數中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=6.小軒從如圖所示的二次函數y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認為其中正確信息的個數有A.2個 B.3個 C.4個 D.5個7.如圖所示幾何體的主視圖是()A. B. C. D.8.如圖,不等式組的解集在數軸上表示正確的是()A. B.C. D.9.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.10.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或511.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.12.如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知某二次函數圖像的最高點是坐標原點,請寫出一個符合要求的函數解析式:_______.14.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.15.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發,沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.16.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.17.分解因式:a3-a=18.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經過若干次圖形的變化(平移、軸對稱、旋轉)得到的,寫出一種由△ABC得到△DEF的過程:_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系xOy中,已知兩點A(0,3),B(1,0),現將線段AB繞點B按順時針方向旋轉90°得到線段BC,拋物線y=ax2+bx+c經過點C.(1)如圖1,若拋物線經過點A和D(﹣2,0).①求點C的坐標及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.20.(6分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.21.(6分)在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關系是________.22.(8分)在平面直角坐標系中,關于的一次函數的圖象經過點,且平行于直線.(1)求該一次函數表達式;(2)若點Q(x,y)是該一次函數圖象上的點,且點Q在直線的下方,求x的取值范圍.23.(8分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.2014年這種禮盒的進價是多少元/盒?若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?24.(10分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.求每個月生產成本的下降率;請你預測4月份該公司的生產成本.25.(10分)定義:若某拋物線上有兩點A、B關于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數y=ax2-2mx+c(a,m,c均為常數且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數圖象與y軸交于點C,且S△ABC=1.①求a的值;②當該二次函數圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.26.(12分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.27.(12分)已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:根據主視圖是從正面看得到的圖形,可得答案.解:從正面看第一層三個小正方形,第二層左邊一個小正方形,右邊一個小正方形.故選C.考點:簡單組合體的三視圖.2、D【解析】

根據k值的正負性分別判斷一次函數y=kx-k與反比例函數(k≠0)所經過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數y=kx-k的圖象經過一、三、四象限,反比例函數(k≠0)的圖象經過一、三象限;當k<0時,一次函數y=kx-k的圖象經過一、二、四象限,反比例函數(k≠0)的圖象經過二、四象限;根據選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數、反比例函數的圖象.正確這兩種圖象所經過的象限是解題的關鍵.3、C【解析】

利用平行四邊形的性質得出△ADF∽△EBF,得出=,再根據勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,FD=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質,解題的關鍵是熟練的掌握勾股定理與相似三角形的判定與性質.4、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數占總情況數的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數有6種,所以概率為12故選D.考點:列表法與樹狀法.5、D【解析】

依據一次函數的圖象,二次函數的圖象以及反比例函數的圖象進行判斷即可.【詳解】A.正比例函數y=2x與x軸交于(0,0),不合題意;B.一次函數y=-3x+1與x軸交于(,0),不合題意;C.二次函數y=x2與x軸交于(0,0),不合題意;D.反比例函數y=與x軸沒有交點,符合題意;故選D.6、D【解析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對稱軸x,∴<1.∴ab>1.故①正確.②如圖,當x=1時,y<1,即a+b+c<1.故②正確.③如圖,當x=﹣1時,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當x=﹣1時,y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對稱軸,則.故⑤正確.綜上所述,正確的結論是①②③④⑤,共5個.故選D.7、C【解析】

從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.【點睛】本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.8、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數軸上表示解集,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.9、B【解析】

根據軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、D【解析】

分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.11、D【解析】

根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.12、D【解析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、等【解析】

根據二次函數的圖象最高點是坐標原點,可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據二次函數的圖象最高點是坐標原點,可以得到a<0,b=0,c=0,例如:.【點睛】此題是開放性試題,考查函數圖象及性質的綜合運用,對考查學生所學函數的深入理解、掌握程度具有積極的意義.14、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.

設這個圓錐形紙帽的底面半徑為r.

根據題意,得40π=2πr,

解得r=20cm.故答案是:20.【點睛】解答本題的關鍵是有確定底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.15、2.4cm【解析】分析:根據圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數圖象,勾股定理,銳角三角函數等知識,解答本題的關鍵是根據圖形得到AC、BC的長度,此題難度一般.16、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案為:3.17、【解析】a3-a=a(a2-1)=18、平移,軸對稱【解析】分析:根據平移的性質和軸對稱的性質即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉,平移,軸對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為對應點與旋轉中心連線的夾角的大小.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】

(1)①先判斷出△AOB≌△GBC,得出點C坐標,進而用待定系數法即可得出結論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標的求法,即可得出結論;(2)同(1)②的方法,借助圖象即可得出結論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯立解得,或(舍)∴P(,);在直線OP上取一點M(3,1),∴點M的對稱點M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經過點C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點恰好有2個,∴方程ax2﹣6ax+8a+1=1有一個正根和一個負根或一個正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點睛】本題是二次函數綜合題,考查了待定系數法,全等三角形的判定和性質,平行線的性質,對稱的性質,解題的關鍵是求出直線和拋物線的交點坐標.20、(1)見解析;(2)【解析】

(1)根據矩形的判定證明即可;(2)根據平行四邊形的性質和等邊三角形的性質解答即可.【詳解】證明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根據題意,在?ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四邊形BDFG為平行四邊形,∵∠BDC=90°,∴四邊形BDFG為矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,點E為BC邊的中點,∴BE=ED=EC,∵在?ABCD中,AB=CD,∴△ECD為等邊三角形,∠C=60°,∴,∴.【點睛】本題考查了矩形的判定、等邊三角形的判定和性質,根據平行四邊形的性質和等邊三角形的性質解答是解題關鍵.21、見解析【解析】(1)如圖:(2)連接AD、CF,則這兩條線段之間的關系是AD=CF,且AD∥CF.22、(1);(2).【解析】

(1)由題意可設該一次函數的解析式為:,將點M(4,7)代入所設解析式求出b的值即可得到一次函數的解析式;(2)根據直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結果.【詳解】解:(1)∵一次函數平行于直線,∴可設該一次函數的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【點睛】本題考查了待定系數法求一次函數的解析式以及一次函數與不等式的關系,屬于常考題型,熟練掌握待定系數法與一次函數與不等式的關系是解題的關鍵.23、(1)35元/盒;(2)20%.【解析】

試題分析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據2014年花3500元與2016年花2400元購進的禮盒數量相同,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設年增長率為m,根據數量=總價÷單價求出2014年的購進數量,再根據2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關于m的一元二次方程,解之即可得出結論.試題解析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據題意得:,解得:x=35,經檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設年增長率為m,2014年的銷售數量為3500÷35=100(盒).根據題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點:一元二次方程的應用;分式方程的應用;增長率問題.24、(1)每個月生產成本的下降率為5%;(2)預測4月份該公司的生產成本為342.95萬元.【解析】

(1)設每個月生產成本的下降率為x,根據2月份、3月份的生產成本,即可得出關于x的一元二次方程,解之取其較小值即可得出結論;(2)由4月份該公司的生產成本=3月份該公司的生產成本×(1﹣下降率),即可得出結論.【詳解】(1)設每個月生產成本的下降率為x,根據題意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合題意,舍去).答:每個月生產成本的下降率為5%;(2)361×(1﹣5%)=342.95(萬元),答:預測4月份該公司的生產成本為342.95萬元.【點睛】本題考查了一元二次方程的應用,解題的關鍵是:(1)找準等量關系,正確列出一元二次方程;(2)根據數量關系,列式計算.25、(1)ac<3;(3)①a=1;②m>或m<.【解析】

(1)設A

(p,q).則B

(-p,-q),把A、B坐標代入解析式可得方程組即可得到結論;

(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據三角形的面積公式列方程即可得到結果;②由①可知:拋物線解析式為y=x3-3mx-1,根據M(-1,1)、N(3,4).得到這些MN的解析式y=x+(-1≤x≤3),聯立方程組得到x3-3mx-1=x+,故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,建立新的二次函數:y=x3-(3m+)x-,根據題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結論.【詳解】(1)設A

(p,q).則B

(-p,-q),

把A、B坐標代入解析式可得:,

∴3ap3+3c=3.即p3=?,

∴?≥3,

∵ac≠3,

∴?>3,

∴ac<3;

(3)∵c=-1,

∴p3=,a>3,且C(3,-1),

∴p=±,

①S△ABC=×3×1=1,

∴a=1;

②由①可知:拋物線解析式為y=x3-3mx-1,

∵M(-1,1)、N(3,4).

∴MN:y=x+(-1≤x≤3),

依題,只需聯立在-1≤x≤3內只有一個解即可,

∴x3-3mx-1=x+,

故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,

建立新的二次函數:y=x3-(3m+)x-,

∵△=(3m+)3+11>3且c=-<3,

∴拋物線y=x3?(3m+)x?與x軸有兩個交點,且交y軸于負半軸.

不妨設方程x3?(3m+)x?=3的兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論