浙江省武義第三中學2024年高三第五次模擬考試數學試卷含解析_第1頁
浙江省武義第三中學2024年高三第五次模擬考試數學試卷含解析_第2頁
浙江省武義第三中學2024年高三第五次模擬考試數學試卷含解析_第3頁
浙江省武義第三中學2024年高三第五次模擬考試數學試卷含解析_第4頁
浙江省武義第三中學2024年高三第五次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省武義第三中學2024年高三第五次模擬考試數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件2.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形4.已知函數,若對于任意的,函數在內都有兩個不同的零點,則實數的取值范圍為()A. B. C. D.5.已知函數,若時,恒成立,則實數的值為()A. B. C. D.6.已知函數,,當時,不等式恒成立,則實數a的取值范圍為()A. B. C. D.7.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是()A. B. C. D.8.將函數的圖象向左平移個單位長度,得到的函數為偶函數,則的值為()A. B. C. D.9.在中,,則=()A. B.C. D.10.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]11.定義在R上的偶函數滿足,且在區間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能12.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列滿足遞推公式,且,則___________.14.的展開式中的系數為__________(用具體數據作答).15.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.16.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知都是各項不為零的數列,且滿足其中是數列的前項和,是公差為的等差數列.(1)若數列是常數列,,,求數列的通項公式;(2)若是不為零的常數),求證:數列是等差數列;(3)若(為常數,),.求證:對任意的恒成立.18.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.19.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.20.(12分)已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.21.(12分)已知,,為正數,且,證明:(1);(2).22.(10分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

解出兩個不等式的解集,根據充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.2、B【解析】

先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數的取值范圍進行判斷.3、C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.4、D【解析】

將原題等價轉化為方程在內都有兩個不同的根,先求導,可判斷時,,是增函數;當時,,是減函數.因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數可判斷當時,在上是增函數;當時,在上是減函數;則應滿足,再結合,構造函數,求導即可求解;【詳解】函數在內都有兩個不同的零點,等價于方程在內都有兩個不同的根.,所以當時,,是增函數;當時,,是減函數.因此.設,,若在無解,則在上是單調函數,不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數;當時,在上是減函數.因為,方程在內有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數,而,由可得,得.由在上是增函數,得.綜上所述,故選:D.【點睛】本題考查由函數零點個數求解參數取值范圍問題,構造函數法,導數法研究函數增減性與最值關系,轉化與化歸能力,屬于難題5、D【解析】

通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.6、D【解析】

由變形可得,可知函數在為增函數,由恒成立,求解參數即可求得取值范圍.【詳解】,即函數在時是單調增函數.則恒成立..令,則時,單調遞減,時單調遞增.故選:D.【點睛】本題考查構造函數,借助單調性定義判斷新函數的單調性問題,考查恒成立時求解參數問題,考查學生的分析問題的能力和計算求解的能力,難度較難.7、D【解析】

根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.8、D【解析】

利用三角函數的圖象變換求得函數的解析式,再根據三角函數的性質,即可求解,得到答案.【詳解】將將函數的圖象向左平移個單位長度,可得函數又由函數為偶函數,所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及三角函數的性質的應用,其中解答中熟記三角函數的圖象變換,合理應用三角函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、B【解析】

在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.10、D【解析】

設,可得,構造()22,結合,可得,根據向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.11、B【解析】

由已知可求得函數的周期,根據周期及偶函數的對稱性可求在上的單調性,結合三角函數的性質即可比較.【詳解】由可得,即函數的周期,因為在區間上單調遞減,故函數在區間上單調遞減,根據偶函數的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.【點睛】本題主要考查函數值的大小比較,根據函數奇偶性和單調性之間的關系是解決本題的關鍵.12、B【解析】

根據在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.二、填空題:本題共4小題,每小題5分,共20分。13、2020【解析】

可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數列遞推式和累加法的應用,屬于基礎題14、【解析】

利用二項展開式的通項公式可求的系數.【詳解】的展開式的通項公式為,令,故,故的系數為.故答案為:.【點睛】本題考查二項展開式中指定項的系數,注意利用通項公式來計算,本題屬于容易題.15、【解析】

根據三角函數定義表示出,由同角三角函數關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數定義可知,因為,則,所以由同角三角函數關系式可得,所以故答案為:.【點睛】本題考查了三角函數定義,同角三角函數關系式的應用,余弦差角公式的應用,屬于中檔題.16、【解析】

基本事件總數n126,其中三種顏色的球都有包含的基本事件個數m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析;(3)詳見解析.【解析】

(1)根據,可求得,再根據是常數列代入根據通項與前項和的關系求解即可.(2)取,并結合通項與前項和的關系可求得再根據化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當時,,代入所給的條件化簡可得,進而證明可得,即數列是等比數列.繼而求得,再根據作商法證明即可.【詳解】解:.是各項不為零的常數列,則,則由,及得,當時,,兩式作差,可得.當時,滿足上式,則;證明:,當時,,兩式相減得:即.即.又,,即.當時,,兩式相減得:.數列從第二項起是公差為的等差數列.又當時,由得,當時,由,得.故數列是公差為的等差數列;證明:由,當時,,即,,,即,即,當時,即.故從第二項起數列是等比數列,當時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【點睛】本題主要考查了等差等比數列的綜合運用,需要熟練運用通項與前項和的關系分析數列的遞推公式繼而求解通項公式或證明等差數列等.同時也考查了數列中的不等式證明等,需要根據題意分析數列為等比數列并求出通項,再利用作商法證明.屬于難題.18、(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系,圓與橢圓的位置關系.點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理.存在性問題,往往從假設存在出發,運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應用平面向量知識證明了圓的存在性.19、(1)(2).【解析】

(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標運算,以及向量平行,是常考題型.20、(1)(2)點在曲線外.【解析】

(1)先消參化曲線的參數方程為普通方程,再化為極坐標方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關系.【詳解】(1)由曲線的參數方程為可得曲線的普通方程為,則曲線的極坐標方程為,即(2)由題,點是曲線上的一點,因為,所以,即,所以點在曲線外.【點睛】本題考查參數方程與普通方程的轉化,考查直角坐標方程與極坐標方程的轉化,考查點與圓的位置關系.21、(1)證明見解析;(2)證明見解析.【解析】

(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論