山東省聊城市冠縣東古城鎮中學2023-2024學年中考數學四模試卷含解析_第1頁
山東省聊城市冠縣東古城鎮中學2023-2024學年中考數學四模試卷含解析_第2頁
山東省聊城市冠縣東古城鎮中學2023-2024學年中考數學四模試卷含解析_第3頁
山東省聊城市冠縣東古城鎮中學2023-2024學年中考數學四模試卷含解析_第4頁
山東省聊城市冠縣東古城鎮中學2023-2024學年中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省聊城市冠縣東古城鎮中學2023-2024學年中考數學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.在“大家跳起來”的鄉村學校舞蹈比賽中,某校10名學生參賽成績統計如圖所示.對于這10名學生的參賽成績,下列說法中錯誤的是()A.眾數是90 B.中位數是90 C.平均數是90 D.極差是152.在剛剛結束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數是9 B.眾數為16 C.平均分為7.78 D.方差為23.弘揚社會主義核心價值觀,推動文明城市建設.根據“文明創建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結果如下表:人數2341分數80859095則得分的眾數和中位數分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.54.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.5.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±206.下列命題是真命題的是()A.如實數a,b滿足a2=b2,則a=bB.若實數a,b滿足a<0,b<0,則ab<0C.“購買1張彩票就中獎”是不可能事件D.三角形的三個內角中最多有一個鈍角7.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.8.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形9.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為()A. B. C. D.10.四組數中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數的是()A.①② B.①③ C.①④ D.①③④二、填空題(本大題共6個小題,每小題3分,共18分)11.用一張扇形紙片圍成一個圓錐的側面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.12.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.13.欣欣超市為促銷,決定對A,B兩種商品統一進行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.14.同時擲兩粒骰子,都是六點向上的概率是_____.15.將點P(﹣1,3)繞原點順時針旋轉180°后坐標變為_____.16.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認為正確的都填上).三、解答題(共8題,共72分)17.(8分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F(1)證明:PC=PE;(2)求∠CPE的度數;(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.18.(8分)(1)計算:;(2)化簡:.19.(8分)計算:.化簡:.20.(8分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發現如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長21.(8分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3422.(10分)如圖,在中,,且,,為的中點,于點,連結,.(1)求證:;(2)當為何值時,的值最大?并求此時的值.23.(12分)已知拋物線y=﹣x2﹣4x+c經過點A(2,0).(1)求拋物線的解析式和頂點坐標;(2)若點B(m,n)是拋物線上的一動點,點B關于原點的對稱點為C.①若B、C都在拋物線上,求m的值;②若點C在第四象限,當AC2的值最小時,求m的值.24.如圖,沿AC方向開山修路.為了加快施工進度,要在小山的另一邊同時施工,從AC上的一點B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開挖點E離D多遠正好使A,C,E三點在一直線上(取1.732,結果取整數)?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

由統計圖中提供的數據,根據眾數、中位數、平均數、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現了5次,出現的次數最多,∴眾數是90;∵共有10個數,∴中位數是第5、6個數的平均數,∴中位數是(90+90)÷2=90;∵平均數是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.2、A【解析】

根據中位數,眾數,平均數,方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數是25位與26位的平均數,即為1.故選A.【點睛】本題考查中位數,眾數,平均數,方差的定義,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.3、A【解析】找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,可得答案.解:在這一組數據中90是出現次數最多的,故眾數是90;排序后處于中間位置的那個數,那么由中位數的定義可知,這組數據的中位數是87.5;故選:A.“點睛”本題考查了眾數、中位數的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數:將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.4、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.5、B【解析】

根據完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.6、D【解析】

A.兩個數的平方相等,這兩個數不一定相等,有正負之分即可判斷B.同號相乘為正,異號相乘為負,即可判斷C.“購買1張彩票就中獎”是隨機事件即可判斷D.根據三角形內角和為180度,三個角中不可能有兩個以上鈍角即可判斷【詳解】如實數a,b滿足a2=b2,則a=±b,A是假命題;數a,b滿足a<0,b<0,則ab>0,B是假命題;若實“購買1張彩票就中獎”是隨機事件,C是假命題;三角形的三個內角中最多有一個鈍角,D是真命題;故選:D【點睛】本題考查了命題與定理,根據實際判斷是解題的關鍵7、B【解析】

根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.8、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.9、B【解析】

連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),

故選B.【點睛】本題考查翻折變換、坐標與圖形的性質、等邊三角形的判定和性質、銳角三角函數等知識,解題的關鍵是發現特殊三角形,利用特殊三角形解決問題.10、C【解析】

根據倒數的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數的是:①④,故選C.【點睛】此題主要考查了倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

設這個圓錐的母線長為xcm,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設這個圓錐的母線長為xcm,根據題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、42【解析】

延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長AB交DC于H,作EG⊥AB于G,如圖所示:

則GH=DE=15米,EG=DH,

∵梯坎坡度i=1:2.4,

∴BH:CH=1:2.4,

設BH=x米,則CH=2.4x米,

在Rt△BCH中,BC=13米,

由勾股定理得:x2+(2.4x)2=132,

解得:x=5,

∴BH=5米,CH=12米,

∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),

∵∠α=45°,

∴∠EAG=90°-45°=45°,

∴△AEG是等腰直角三角形,

∴AG=EG=32(米),

∴AB=AG+BG=32+10=42(米);

故答案為42【點睛】本題考查了解直角三角形的應用-坡度、俯角問題;通過作輔助線運用勾股定理求出BH,得出EG是解決問題的關鍵.13、1【解析】

設A、B兩種商品的售價分別是1件x元和1件y元,根據題意列出x和y的二元一次方程組,解方程組求出x和y的值,進而求解即可.【詳解】解:設A、B兩種商品的售價分別是1件x元和1件y元,根據題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點睛】本題考查了利用二元一次方程組解決現實生活中的問題.解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程組,再求解.14、.【解析】

同時擲兩粒骰子,一共有6×6=36種等可能情況,都是六點向上只有一種情況,按概率公式計算即可.【詳解】解:都是六點向上的概率是.【點睛】本題考查了概率公式的應用.15、(1,﹣3)【解析】

畫出平面直角坐標系,然后作出點P繞原點O順時針旋轉180°的點P′的位置,再根據平面直角坐標系寫出坐標即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉180°后的對應點P′的坐標為(1,-3).

故答案是:(1,-3).【點睛】考查了坐標與圖形變化-旋轉,作出圖形,利用數形結合的思想求解更簡便,形象直觀.16、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD。∵△AEF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①說法正確。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②說法正確。如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③說法錯誤。∵EF=2,∴CE=CF=。設正方形的邊長為a,在Rt△ADF中,,解得,∴。∴。∴④說法正確。綜上所述,正確的序號是①②④。三、解答題(共8題,共72分)17、(1)證明見解析(2)90°(3)AP=CE【解析】

(1)、根據正方形得出AB=BC,∠ABP=∠CBP=45°,結合PB=PB得出△ABP≌△CBP,從而得出結論;(2)、根據全等得出∠BAP=∠BCP,∠DAP=∠DCP,根據PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先證明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,從而得出∠CPF=∠EDF=60°,然后得出△EPC是等邊三角形,從而得出AP=CE.【詳解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(對頂角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等邊三角形,∴PC=CE,∴AP=CE考點:三角形全等的證明18、(1)4+;(2).【解析】

(1)根據冪的乘方、零指數冪、特殊角的三角函數值和絕對值可以解答本題;(3)根據分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點睛】本題考查分式的混合運算、實數的運算、零指數冪、特殊角的三角函數值和絕對值,解答本題的關鍵是明確它們各自的計算方法.19、(1)5;(2)-3x+4【解析】

(1)第一項計算算術平方根,第二項計算零指數冪,第三項計算特殊角的三角函數值,最后計算有理數運算.(2)利用完全平方公式和去括號法則進行計算,再進行合并同類項運算.【詳解】(1)解:原式(2)解:原式【點睛】本題考查實數的混合運算和整式運算,解題關鍵是熟練運用完全平方公式和熟記特殊角的三角函數值.20、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點C旋轉得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時S△DCF1=S△BDE;

過點D作DF1⊥BD,

∵∠ABC=20°,F1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點D是角平分線上一點,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點F1也是所求的點,

∵∠ABC=20°,點D是角平分線上一點,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長為3或2.21、(1)證明見解析;(2)256【解析】

(1)先利用切線的性質得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進而得出∠EAD=∠CAD,進而判斷出△ADF≌△ADC,即可得出結論;(2)過點D作DG⊥AE,垂足為G.依據等腰三角形的性質可得到EG=AG=1,然后在Rt△GEG中,依據銳角三角函數的定義可得到DG的長,然后依據勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據銳角三角函數的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下圖所示:過點D作DG⊥AE,垂足為G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半徑為256【點睛】本題考查了切線的性質,圓周角定理,圓的性質,全等三角形的判定和性質,利用等式的性質和同角的余角相等判斷角相等是解本題的關鍵.22、(1)見解析;(2)時,的值最大,【解析】

(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據,可證出,得出,利用,,點是的中點,得出,,則有,可得出,得出,即可得出結論;(2)設BE=x,則,,由勾股定理得出,,得出,求出,由二次函數的性質得出當x=1,即BE=1時,CE2-CF2有最大值,,由三角函數定義即可得出結果.【詳解】解:(1)證明:如圖,延長交的延長線于點,∵為的中點,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點是的中點,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設,則,∵,∴,在中,,在中,,∵,∴,∴,∴當,即時,的值最大,∴.在中,【點睛】本題考查了平行四邊形的性質、全等三角形的判定與性質、等腰直角三角形的判定與性質、勾股定理、等腰三角形的判定與性質等知識;證明三角形全等和等腰三角形是解題的關鍵.23、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點坐標為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據拋物線的解析式求得拋物線的頂點坐標即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論