廣東省肇慶市懷集縣市級名校2023-2024學年中考數學模擬試卷含解析_第1頁
廣東省肇慶市懷集縣市級名校2023-2024學年中考數學模擬試卷含解析_第2頁
廣東省肇慶市懷集縣市級名校2023-2024學年中考數學模擬試卷含解析_第3頁
廣東省肇慶市懷集縣市級名校2023-2024學年中考數學模擬試卷含解析_第4頁
廣東省肇慶市懷集縣市級名校2023-2024學年中考數學模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省肇慶市懷集縣市級名校2023-2024學年中考數學模擬精編試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數為()A.10° B.15° C.20° D.25°2.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、63.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現m次,則事件A發生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內接多邊形一定是正多邊形;⑤若一個事件可能發生的結果共有n種,則每一種結果發生的可能性是.其中正確的個數()A.1 B.2 C.3 D.44.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<105.如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數為()A.40° B.45° C.50° D.55°6.二次函數y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數y=與一次函數y=bx﹣c在同一坐標系內的圖象大致是()A. B. C. D.7.計算的結果是()A.a2 B.-a2 C.a4 D.-a48.當a>0時,下列關于冪的運算正確的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a59.一個圓錐的側面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.610.的倒數是()A.﹣ B.2 C.﹣2 D.11.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形12.如圖,,交于點,平分,交于.若,則

的度數為()

A.35o B.45o C.55o D.65o二、填空題:(本大題共6個小題,每小題4分,共24分.)13.點(1,–2)關于坐標原點O的對稱點坐標是_____.14.如圖所示,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.15.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.16.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數的圖象恰好經過點A′,B,則的值為_________.17.二次函數y=的圖象如圖,點A0位于坐標原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數位于第一象限的圖象上,點C1,C2,C3…Cn在二次函數位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn=60°,菱形An﹣1BnAnCn的周長為.18.將直線y=x沿y軸向上平移2個單位長度后,所得直線的函數表達式為_________,這兩條直線間的距離為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?20.(6分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結果保留根號)21.(6分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數量不少于A型無人機的數量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?22.(8分)如圖,在平面直角坐標系中,一次函數y=﹣x+2的圖象交x軸于點P,二次函數y=﹣x2+x+m的圖象與x軸的交點為(x1,0)、(x2,0),且+=17(1)求二次函數的解析式和該二次函數圖象的頂點的坐標.(2)若二次函數y=﹣x2+x+m的圖象與一次函數y=﹣x+2的圖象交于A、B兩點(點A在點B的左側),在x軸上是否存在點M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請求出點M的坐標;若不存在,請說明理由.23.(8分)先化簡,再在1,2,3中選取一個適當的數代入求值.24.(10分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;25.(10分)已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,FB交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.26.(12分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?27.(12分)已知拋物線y=ax2+c(a≠0).(1)若拋物線與x軸交于點B(4,0),且過點P(1,–3),求該拋物線的解析式;(2)若a>0,c=0,OA、OB是過拋物線頂點的兩條互相垂直的直線,與拋物線分別交于A、B兩點,求證:直線AB恒經過定點(0,);(3)若a>0,c<0,拋物線與x軸交于A,B兩點(A在B左邊),頂點為C,點P在拋物線上且位于第四象限.直線PA、PB與y軸分別交于M、N兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據平行線的性質即可解答【詳解】根據題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等2、D【解析】

5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.3、A【解析】

根據垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結論錯誤;②在n次隨機實驗中,事件A出現m次,則事件A發生的頻率,試驗次數足夠大時可近似地看做事件A的概率,故此結論錯誤;③各角相等的圓外切多邊形是正多邊形,此結論正確;④各角相等的圓內接多邊形不一定是正多邊形,如圓內接矩形,各角相等,但不是正多邊形,故此結論錯誤;⑤若一個事件可能發生的結果共有n種,再每種結果發生的可能性相同是,每一種結果發生的可能性是.故此結論錯誤;故選:A.【點睛】本題主要考查命題的真假,解題的關鍵是掌握垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義.4、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.5、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點:1、平行線的性質;2、圓周角定理;3等腰三角形的性質6、C【解析】

根據二次函數的圖象找出a、b、c的正負,再結合反比例函數、一次函數系數與圖象的關系即可得出結論.【詳解】解:觀察二次函數圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數中k=﹣a<1,∴反比例函數圖象在第二、四象限內;∵一次函數y=bx﹣c中,b<1,﹣c<1,∴一次函數圖象經過第二、三、四象限.故選C.【點睛】本題考查了二次函數的圖象、反比例函數的圖象以及一次函數的圖象,解題的關鍵是根據二次函數的圖象找出a、b、c的正負.本題屬于基礎題,難度不大,解決該題型題目時,根據二次函數圖象找出a、b、c的正負,再結合反比例函數、一次函數系數與圖象的關系即可得出結論.7、D【解析】

直接利用同底數冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數冪的乘法運算,正確掌握運算法則是解題關鍵.8、A【解析】

直接利用零指數冪的性質以及負指數冪的性質、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數冪的性質以及負指數冪的性質、冪的乘方運算,正確掌握相關運算法則是解題關鍵.9、C【解析】設母線長為R,底面半徑是3cm,則底面周長=6π,側面積=3πR=12π,

∴R=4cm.故選C.10、B【解析】

根據乘積是1的兩個數叫做互為倒數解答.【詳解】解:∵×1=1∴的倒數是1.故選B.【點睛】本題考查了倒數的定義,是基礎題,熟記概念是解題的關鍵.11、B【解析】

根據中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.12、D【解析】分析:根據平行線的性質求得∠BEC的度數,再由角平分線的性質即可求得∠CFE的度數.詳解:又∵EF平分∠BEC,.故選D.點睛:本題主要考查了平行線的性質和角平分線的定義,熟知平行線的性質和角平分線的定義是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(-1,2)【解析】

根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),

故答案為:(-1,2).【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規律.14、【解析】

根據同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.15、【解析】

先利用等腰直角三角形的性質求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點睛】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.16、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數y=(k≠0)的圖象恰好經過點A′,B,∴m?m=m,∴m=,∴k=.【點睛】本題考查反比例函數圖象上點的坐標特征;矩形的性質,利用數形結合思想解題是關鍵.17、4n【解析】試題解析:∵四邊形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等邊三角形.設△A0B1A1的邊長為m1,則B1(,);代入拋物線的解析式中得:,解得m1=0(舍去),m1=1;故△A0B1A1的邊長為1,同理可求得△A1B2A2的邊長為2,…依此類推,等邊△An-1BnAn的邊長為n,故菱形An-1BnAnCn的周長為4n.考點:二次函數綜合題.18、y=x+1【解析】

已知直線y=x沿y軸向上平移1個單位長度,根據一次函數圖象的平移規律即可求得平移后的解析式為y=x+1.再利用等面積法求得這兩條直線間的距離即可.【詳解】∵直線y=x沿y軸向上平移1個單位長度,∴所得直線的函數關系式為:y=x+1.∴A(0,1),B(1,0),∴AB=1,過點O作OF⊥AB于點F,則AB?OF=OA?OB,∴OF=,即這兩條直線間的距離為.故答案為y=x+1,.【點睛】本題考查了一次函數圖象與幾何變換:一次函數y=kx+b(k、b為常數,k≠0)的圖象為直線,當直線平移時k不變,當向上平移m個單位,則平移后直線的解析式為y=kx+b+m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1千米/時【解析】

設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【點睛】本題考查了一元一次方程的應用,讀懂題意,找出等量關系,設出未知數后列出方程是解決此類題目的基本思路.20、【解析】

設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.21、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應的方程組,從而可以解答本題;(2)①根據題意可以得到y與x的函數關系式;②根據①中的函數關系式和B型無人機的數量不少于A型無人機的數量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數關系式為;②∵B型無人機的數量不少于A型無人機的數量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應用、一次函數的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數的性質和方程的知識解答.22、(1)y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,點M(,0).理由見解析.【解析】

(1)由根與系數的關系,結合已知條件可得9+4m=17,解方程求得m的值,即可得求得二次函數的解析式,再求得該二次函數圖象的頂點的坐標即可;(2)存在,將拋物線表達式和一次函數y=﹣x+2聯立并解得x=0或,即可得點A、B的坐標為(0,2)、(,),由此求得PB=,AP=2,過點B作BM⊥AB交x軸于點M,證得△APO∽△MPB,根據相似三角形的性質可得,代入數據即可求得MP=,再求得OM=,即可得點M的坐標為(,0).【詳解】(1)由題意得:x1+x2=3,x1x2=﹣2m,x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,解得:m=2,拋物線的表達式為:y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,理由:將拋物線表達式和一次函數y=﹣x+2聯立并解得:x=0或,∴點A、B的坐標為(0,2)、(,),一次函數y=﹣x+2與x軸的交點P的坐標為(6,0),∵點P的坐標為(6,0),B的坐標為(,),點B的坐標為(0,2)、∴PB==,AP==2過點B作BM⊥AB交x軸于點M,∵∠MBP=∠AOP=90°,∠MPB=∠APO,∴△APO∽△MPB,∴,∴,∴MP=,∴OM=OP﹣MP=6﹣=,∴點M(,0).【點睛】本題是一道二次函數的綜合題,一元二次方程根與系數的關系、直線與拋物線的較大坐標.相似三角形的判定與性質,題目較為綜合,有一定的難度,解決第二問的關鍵是求得PB、AP的長,再利用相似三角形的性質解決問題.23、,當x=2時,原式=.【解析】試題分析:先括號內通分,然后計算除法,最后取值時注意使得分式有意義,最后代入化簡即可.試題解析:原式===當x=2時,原式=.24、1【解析】

原式利用零指數冪、負整數指數冪法則,絕對值的代數意義,以及特殊角的三角函數值計算即可得到結果.【詳解】原式=4-1+2-+=1.【點睛】此題考查了實數的運算,絕對值,零指數冪、負整數指數冪,以及特殊角的三角函數值,熟練掌握運算法則是解本題的關鍵.25、(1)詳見解析;(2)∠BDE=20°.【解析】

(1)根據已知條件易證BC∥DF,根據平行線的性質可得∠F=∠PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據平行四邊形的性質可得BC=DH=1,在Rt△ABC中,用銳角三角函數求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據三角形外角的性質可得∠OAD=∠DOC=20°,最后根據圓周角定理及平行線的性質即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰△DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,設DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【點睛】本題考查了圓內接四邊形的性質、圓周角定理、平行四邊形的判定與性質、等腰三角形的性質等知識點,解決第(2)問,作出輔助線,求得∠ODH=20°是解決本題的關鍵.26、(1)t=秒;(1)t=5﹣(s).【解析】

(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論