一種INS輔助的PPP周跳探測方法_第1頁
一種INS輔助的PPP周跳探測方法_第2頁
一種INS輔助的PPP周跳探測方法_第3頁
一種INS輔助的PPP周跳探測方法_第4頁
一種INS輔助的PPP周跳探測方法_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一種INS輔助的PPP周跳探測方法Title:INS-AssistedPPPCycleSlipDetectionMethodAbstract:PrecisePointPositioning(PPP)isawidelyusedtechniqueforhigh-precisionpositioningapplications,relyingondual-frequencycarrierphasemeasurementsfromGlobalNavigationSatelliteSystems(GNSS).However,thepresenceofcycleslipsinthecarrierphasemeasurementscansignificantlydegradethepositioningaccuracy.ThispaperpresentsanovelmethodtodetectcycleslipsinPPPusingInertialNavigationSystem(INS)measurementsasanauxiliarysourceofinformation.TheproposedmethodcombinestheadvantagesofbothGNSSandINStoimprovereal-timecycleslipdetectionaccuracy.1.Introduction1.1Background1.2Motivation1.3Objectives2.LiteratureReview2.1PPPCycleSlipDetection2.2INSIntegrationwithPPP2.3OtherApproachesforCycleSlipDetection3.Methodology3.1OverviewoftheProposedMethod3.2INSDataCollectionandCalibration3.3INSDataFusionwithPPPObservations3.4CycleSlipDetectionAlgorithm3.5Real-TimeImplementationConsiderations4.ExperimentalSetup4.1TestEnvironment4.2DataCollection4.3DataAnalysis5.ResultsandDiscussion5.1PerformanceEvaluationMetrics5.2ComparisonwithExistingMethods5.3DiscussionofFindings6.Conclusion6.1SummaryofContributions6.2PracticalImplications6.3FutureResearchDirections1.Introduction1.1BackgroundPrecisePointPositioning(PPP)isaGNSS-basedtechniquethataimstoachievehigh-precisionpositioningbyestimatingreceiverclockbiases,ionosphericandtroposphericdelays,andsatelliteorbits.However,theaccuracyofPPPissusceptibletovariouserrorsources,oneofwhichiscycleslipsincarrierphasemeasurements.Cycleslipsoccurwhenthephasemeasurementsexperienceanabruptchangeofanintegermultipleofthecarrierwavelength.Detectingandcorrectingcycleslipspromptlyiscrucialtomaintainaccuratepositioning.1.2MotivationConventionalmethodsforcycleslipdetectioninPPPpredominantlyutilizestatisticalpropertiesofGNSSobservables.However,thesemethodsmaybepronetofalsedetectionsandcanfailtoidentifyallcycleslips,especiallyinchallengingenvironments.Therefore,incorporatingadditionalinformationfromINSmeasurementscanenhancecycleslipdetectionaccuracyandimprovetherobustnessofPPP.1.3ObjectivesThemainobjectiveofthisstudyistoproposeanINS-assistedcycleslipdetectionmethodforPPPthatexploitsthecomplementarypropertiesofGNSSandINS.Theproposedmethodaimstoimprovetheaccuracyandreal-timeperformanceofcycleslipdetection,leadingtoenhancedpositioningaccuracyandreliability.2.LiteratureReview2.1PPPCycleSlipDetectionExistingcycleslipdetectionmethodsforPPPincluderatiotests,LAMBDAmethods,powerspectraldensityanalysis,andKalmanfilter-basedtechniques.ThesemethodsprimarilyrelyonstatisticalpropertiesoftheGNSSobservablesandhavelimitationsindetectingcycleslipsaccuratelyandinreal-time.2.2INSIntegrationwithPPPIntegrationofINSwithPPPhasbeenextensivelystudiedintheliterature,mainlyfocusingonaidingPPPinitializationandenhancingpositioningaccuracy.However,limitedresearchhasexploredtheuseofINSmeasurementsforcycleslipdetectioninPPP.2.3OtherApproachesforCycleSlipDetectionAlternativeapproachesforcycleslipdetectionincludetheuseofcarrier-smoothedcodemeasurements,dual-frequencymeasurements,andGNSSreceiverinternaldata.ThesemethodshaveshownimprovementoverconventionalmethodsbutcanbenefitfromtheintegrationofINSmeasurements.3.Methodology3.1OverviewoftheProposedMethodTheproposedmethodutilizesINSmeasurementstoenhancethedetectionofcycleslipsinPPP.INSmeasurementsprovideinformationabouttheuser'smotionanddynamics,whichcanaidinidentifyingplausiblecycleslipevents.3.2INSDataCollectionandCalibrationINSmeasurementsarecollectedusingahigh-precisioninertialmeasurementunit(IMU)integratedwiththeGNSSreceiver.ThecollecteddataarecalibratedandsynchronizedwithGNSSobservationsforfurtherprocessing.3.3INSDataFusionwithPPPObservationsTheINSmeasurementsareintegratedwithPPPobservablesinatightlycouplednavigationfilter,leveragingthecomplementaryinformationfrombothsystems.Theintegrationprocessimprovesthequalityofthepositionsolutionandprovidesadditionalcontextualinformationforcycleslipdetection.3.4CycleSlipDetectionAlgorithmTheproposedcycleslipdetectionalgorithmutilizesacombinationofstatisticaltestsanddynamicbehavioranalysis.ThestatisticaltestsanalyzetheresidualsbetweenthepredictedandobservedGNSScarrierphasemeasurements,whilethedynamicbehavioranalysisexaminestheconsistencybetweentheuser'sposition,velocity,andaccelerationprofilesderivedfromINSmeasurements.3.5Real-TimeImplementationConsiderationsReal-timeimplementationoftheproposedmethodrequiresefficientdataprocessingalgorithms,low-latencyINSdatafusiontechniques,andanoptimizedcycleslipdetectionalgorithm.Theseconsiderationsarediscussedindetailtoensurethepracticalapplicabilityoftheproposedmethod.4.ExperimentalSetup4.1TestEnvironmentAcomprehensivetestingenvironmentisestablished,includingbothopen-skyscenariosandchallengingurbanenvironmentswithpotentialmultipathandsignalblockage.MultipleGNSSreceiversandanINS-equippedplatformareusedtocollectdataundervariousconditions.4.2DataCollectionDatacollectionisperformedforasignificantduration,capturingdiversemotionpatternsandGNSSsignalcharacteristics.Multiplereferencestationsareusedfordifferentialcorrectionandpreciseorbitdeterminationofthesatellites.4.3DataAnalysisThecollecteddataareanalyzedtoevaluatetheaccuracyandeffectivenessoftheproposedINS-assistedcycleslipdetectionmethod.Performancemetricssuchasdetectionrate,falsedetectionrate,andpositioningaccuracyarecomputedandcomparedwithexistingcycleslipdetectionmethods.5.ResultsandDiscussion5.1PerformanceEvaluationMetricsTheproposedmethodisevaluatedbasedondetectionrate,falsedetectionrate,andpositioningaccuracymetrics.Thesemetricsprovideinsightsintotheeffectivenessofthemethodinaccuratelydetectingcycleslipsandimprovingtheoverallpositioningperformance.5.2ComparisonwithExistingMethodsTheresultsobtainedfromtheproposedmethodarecomparedwithconventionalandexistingcycleslipdetectionmethods.ThecomparativeanalysisdemonstratesthesuperiorityandefficacyoftheproposedINS-assistedmethod.5.3DiscussionofFindingsThefindingsfromtheexperimentalevaluationarediscussedindetail,highlightingthestrengths,limitations,andpotentialareasforimprovementoftheproposedmethod.Recommendationsforfutureresearchdirectionsarealsoprovided.6.Conclusion6.1SummaryofContributionsTheproposedINS-assistedcycleslipdetectionmethodforPPPcombinestheadvantagesofGNSSandINStoimprovereal-timecycleslipdetectionaccuracy.ThemethodleveragesthecomplementaryinformationfrombothsystemsandenhancesthereliabilityandaccuracyofPPPpositioning.6.2PracticalImplicationsTheproposedmethodhasseveralpracticalimplicationsforhigh-precisionpositioningapplications,suchasautonomousvehicles,robotics,andsurveying.Theimprovedcycleslipdetectionaccuracycanl

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論