




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省山東師大附中高三最后一模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.3.函數的圖象如圖所示,則它的解析式可能是()A. B.C. D.4.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.35.已知全集為,集合,則()A. B. C. D.6.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20207.“一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發展我國與沿線國家經濟合作關系,共同打造政治互信、經濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降8.函數的圖像大致為().A. B.C. D.9.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.1210.已知命題,,則是()A., B.,.C., D.,.11.如圖,在中,,是上的一點,若,則實數的值為()A. B. C. D.12.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等比數列,是它的前項和.若,且與的等差中項為,則__________.14.若的展開式中所有項的系數之和為,則______,含項的系數是______(用數字作答).15.的展開式中的系數為__________.16.設滿足約束條件,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統計圖如圖:(1)估計該批次產品長度誤差絕對值的數學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.18.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.19.(12分)設函數,.(Ⅰ)討論的單調性;(Ⅱ)時,若,,求證:.20.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.21.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.22.(10分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.2、A【解析】
根據題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.3、B【解析】
根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數圖象得定義域為,所以不合題意;選項,計算,不符合函數圖象;對于選項,與函數圖象不一致;選項符合函數圖象特征.故選:B【點睛】此題考查根據函數圖象選擇合適的解析式,主要利用函數性質分析,常見方法為排除法.4、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.5、D【解析】
對于集合,求得函數的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數的定義域,考查解一元二次不等式.6、C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.7、D【解析】
根據統計圖中數據的含義進行判斷即可.【詳解】對A項,由統計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統計圖可得,2015年出口額最少,則B正確;對C項,由統計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【點睛】本題主要考查了根據條形統計圖和折線統計圖解決實際問題,屬于基礎題.8、A【解析】
本題采用排除法:由排除選項D;根據特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數,則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數解析式較復雜的圖象的判斷;利用函數奇偶性、特殊值符號的正負等有關性質進行逐一排除是解題的關鍵;屬于中檔題.9、D【解析】
推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.10、B【解析】
根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.11、B【解析】
變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數.思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數的值.(2)直線的向量式參數方程:三點共線?(為平面內任一點,)12、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設等比數列的公比為,根據題意求出和的值,進而可求得和的值,利用等比數列求和公式可求得的值.【詳解】由等比數列的性質可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數列求和,解答的關鍵就是等比數列的公比,考查計算能力,屬于基礎題.14、【解析】的展開式中所有項的系數之和為,,,項的系數是,故答案為(1),(2).15、3【解析】
分別用1和進行分類討論即可【詳解】當第一個因式取1時,第二個因式應取含的項,則對應系數為:;當第一個因式取時,第二個因式應取含的項,則對應系數為:;故的展開式中的系數為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數的求解,屬于基礎題16、【解析】
由題意畫出可行域,轉化目標函數為,數形結合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉化目標函數為,通過平移直線,數形結合可知:當直線過點A時,直線截距最大,z最小;當直線過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.【點睛】本題考查了簡單的線性規劃,考查了數形結合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據題意即可寫出該批次產品長度誤差的絕對值的頻率分布列,再根據期望公式即可求出;(2)由(1)可知,任取一件產品是標準長度的概率為0.4,即可求出隨機抽取2件產品,都不是標準長度產品的概率,由對立事件的概率公式即可得到隨機抽取2件產品,至少有1件是標準長度產品的概率,判斷其是否符合生產要求;當不符合要求時,設生產一件產品為標準長度的概率為,可根據上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數學期望的估計為.(2)由(1)可知任取一件產品是標準長度的概率為0.4,設至少有1件是標準長度產品為事件,則,故不符合概率不小于0.8的要求.設生產一件產品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產一件產品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發生的概率公式的應用,對立事件的概率公式的應用,解題關鍵是對題意的理解,意在考查學生的數學建模能力和數學運算能力,屬于基礎題.18、(1);(2)【解析】
(1)設,則由題設條件可得,化簡后可得軌跡的方程.(2)設直線,聯立直線方程和拋物線方程后利用韋達定理化簡并求得,結合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設,則圓心的坐標為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設直線,聯立得,設(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數量積.一般地,拋物線中的弦長問題,一般可通過聯立方程組并消元得到關于或的一元二次方程,再把已知等式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為某一個變量的方程.本題屬于中檔題.19、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數求導,再根據參數的取值,討論的正負,即可求出關于的單調性即可;(2)首先通過構造新函數,討論新函數的單調性,根據新函數的單調性證明.【詳解】(1),令,則,令得,當時,則在單調遞減,當時,則在單調遞增,所以,當時,,即,則在上單調遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調遞增,在單調遞減;(2)證明:構造函數,,,,整理得,,(當時等號成立),所以在上單調遞增,則,所以在上單調遞增,,這里不妨設,欲證,即證由(1)知時,在上單調遞增,則需證,由已知有,只需證,即證,由在上單調遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導數含參分類討論單調性,借助構造函數和單調性證明不等式,屬于難題.20、(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標系,設,計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標原點,為軸,為軸,為軸建立空間直角坐標系,則,,,,,,,設,則,設平面的法向量為,則,即,故取因為直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農業技術引進與合作種植協議
- 保護環境的演講作文6篇
- 新興技術在基礎教育生態重構中的實踐與前景
- 電競行業選手培訓與管理體系
- 小學課堂中的性格教育與品格塑造
- 一件小事給我的啟示議論文形式呈現(10篇)
- 零售業在線商城試題
- DB13T 1320.1-2010 中藥材種子質量標準 第1部分:紫蘇
- 智能穿戴設備研發進度跟蹤表表
- 加強產學研合作促進技術轉化與應用
- 專業技術人員年度考核情況登記表
- MOOC 工程經濟學原理-東南大學 中國大學慕課答案
- 兒童眩暈的診斷與治療課件
- 湖北省固體礦產地質勘查坑探工程 設計編寫要求
- GB/T 33285.2-2024皮革和毛皮烷基酚及烷基酚聚氧乙烯醚的測定第2部分:間接法
- 專車出行合同
- 腦室穿刺引流術后護理
- 江西歷史文化介紹
- 擴大高水平對外開放課件
- 預制型橡膠跑道的施工方法
- 綜合醫院圍手術期管理
評論
0/150
提交評論