




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省濱州市十二校高考仿真卷數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,則()A. B. C. D.2.已知集合,,則為()A. B. C. D.3.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.4.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路5.已知,若,則等于()A.3 B.4 C.5 D.66.設集合,,則().A. B.C. D.7.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.8.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.9.已知集合,,則中元素的個數為()A.3 B.2 C.1 D.010.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.11.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數12.已知在中,角的對邊分別為,若函數存在極值,則角的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數是定義在上的奇函數,則的值為__________.14.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.16.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.18.(12分)已知正實數滿足.(1)求的最小值.(2)證明:19.(12分)已知函數.(Ⅰ)求函數的單調區間;(Ⅱ)當時,求函數在上最小值.20.(12分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.21.(12分)2019年安慶市在大力推進城市環境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數據,其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態分布,近似為這1000人得分的平均值(同一組數據用該區間的中點值作代表),利用該正態分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.22.(10分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎題.2、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.3、A【解析】
函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.4、D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.5、C【解析】
先求出,再由,利用向量數量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.6、D【解析】
根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,7、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.8、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.9、C【解析】
集合表示半圓上的點,集合表示直線上的點,聯立方程組求得方程組解的個數,即為交集中元素的個數.【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.10、A【解析】
畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.11、C【解析】
根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.12、C【解析】
求出導函數,由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數性質可得結論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉化成,根據函數是定義在上的奇函數得出,從而得出函數解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數,則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數的化簡,三角函數的奇偶性和三角函數求值,考查了基本知識的應用能力和計算能力,是基礎題.14、11【解析】
將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數原理,求得總的方法數.【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15、12【解析】
由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為?!军c睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結構特征,合理、恰當地表示直四棱柱三棱錐的體積是解答本題的關鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。16、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)由條件可得,再根據離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(?。┊斉c軸垂直時,設直線的方程為:代入得:,,,解得:,;(ⅱ)當與軸不垂直時,設,,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關系,考查韋達定理的應用,考查了學生的計算能力,是中檔題.18、(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.19、(Ⅰ)見解析;(Ⅱ)當時,函數的最小值是;當時,函數的最小值是【解析】
(1)求出導函數,并且解出它的零點x=,再分區間討論導數的正負,即可得到函數f(x)的單調區間;
(2)分三種情況加以討論,結合函數的單調性與函數值的大小比較,即可得到當0<a<ln2時,函數f(x)的最小值是-a;當a≥ln2時,函數f(x)的最小值是ln2-2a.【詳解】函數的定義域
為.
因為,令,可得;
當時,;當時,,綜上所述:可知函數的單調遞增區間為,單調遞減區間為當,即時,函數在區間上是減函數,
的最小值是當,即時,函數在區間上是增函數,的最小值是當,即時,函數在上是增函數,在上是減函數.
又,
當時,的最小值是;
當時,的最小值為綜上所述,結論為當時,函數的最小值是;
當時,函數的最小值是.【點睛】求函數極值與最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區間上的最值還需要比較端點值的函數值與極值的大小20、(1)(2)三個零點【解析】
(1)由題意知恒成立,構造函數,對函數求導,求得函數最值,進而得到結果;(2)當時先對函數求導研究函數的單調性可得到函數有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設,,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調,無極值;當時,,一方面,,且在遞減,所以在區間有一個零點.另一方面,,設,則,從而在遞增,則,即,又在遞增,所以在區間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數的極大值點,是函數的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數的零點,導數的綜合應用.在研究函數零點時,有一種方法是把函數的零點轉化為方程的解,再把方程的解轉化為函數圖象的交點,特別是利用分離參數法轉化為動直線與函數圖象交點問題,這樣就可利用導數研究新函數的單調性與極值,從而得出函數的變化趨勢,得出結論.21、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態分布
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級體育課教學輔助計劃他
- 新員工培訓培優輔差工作計劃
- 小學語文學科競賽心得體會
- 第二學期小學教導處德育工作實施計劃
- 電力系統員工學習張欣同志先進事跡心得體會
- 放射科醫療質量安全事件報告制度及流程
- 以形促言:聚焦于形任務在高中英語閱讀課堂的效能探究
- 以客戶為擎驅動增長:A集團大客戶管理體系的深度剖析與創新實踐
- 一年級興趣發展與德育結合計劃
- 2025年華中農業大學自主招生職業規劃個人陳述范文
- 2024年寧夏銀川金鳳區社區專職工作者考試真題
- 2025年黑龍江龍東地區中考數學試卷真題及答案詳解(精校打?。?/a>
- 《新青年 鄭出發》打造城市夜經濟文旅美食商業街運營規劃方案
- 普陀區2024-2025學年下學期期末考試六年級數學試卷及答案(上海新教材滬教版)
- 咖啡師考試題庫
- 2025年中國水下測深儀市場調查研究報告
- 2025年湖北省中考數學試卷
- 2025年湖北省中考英語試卷真題(含答案)
- 2025年陜西省中考數學真題含答案
- 2025年春國家開放大學《馬克思主義基本原理》期末終考試卷1參考答案試卷1
- 2025年供應鏈管理專業考試題及答案
評論
0/150
提交評論