




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年重慶市第十一中學高三第六次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若,則的最小值為()參考數據:A. B. C. D.2.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.3.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.4.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.5.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.6.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.7.已知集合,則全集則下列結論正確的是()A. B. C. D.8.已知集合,,若AB,則實數的取值范圍是()A. B. C. D.9.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加10.已知命題:,,則為()A., B.,C., D.,11.設函數滿足,則的圖像可能是A. B.C. D.12.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數的圖象在處的切線與直線互相垂直,則_____.14.已知數列的各項均為正數,記為的前n項和,若,,則________.15.在長方體中,,,,為的中點,則點到平面的距離是______.16.已知實數、滿足,且可行域表示的區域為三角形,則實數的取值范圍為______,若目標函數的最小值為-1,則實數等于______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若不等式對恒成立,求實數的取值范圍.18.(12分)已知,均為正項數列,其前項和分別為,,且,,,當,時,,.(1)求數列,的通項公式;(2)設,求數列的前項和.19.(12分)設函數.(1)若恒成立,求整數的最大值;(2)求證:.20.(12分)已知,,設函數,.(1)若,求不等式的解集;(2)若函數的最小值為1,證明:.21.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.22.(10分)已知函數.(1)若不等式有解,求實數的取值范圍;(2)函數的最小值為,若正實數,,滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
首先的單調性,由此判斷出,由求得的關系式.利用導數求得的最小值,由此求得的最小值.【詳解】由于函數,所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數,.構造函數,,所以在區間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區間上遞增,在區間上遞減.而,所以在區間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數研究函數的最值,考查分段函數的圖像與性質,考查化歸與轉化的數學思想方法,屬于難題.2、C【解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.3、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數形結合思想易得.4、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..5、C【解析】
建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.6、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.7、D【解析】
化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.8、D【解析】
先化簡,再根據,且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.9、C【解析】
根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.10、C【解析】
根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.11、B【解析】根據題意,確定函數的性質,再判斷哪一個圖像具有這些性質.由得是偶函數,所以函數的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數,選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.12、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】
求函數的導數,根據導數的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【詳解】函數的圖象在處的切線與直線垂直,函數的圖象在的切線斜率本題正確結果:【點睛】本題主要考查直線垂直的應用以及導數的幾何意義,根據條件建立方程關系是解決本題的關鍵.14、127【解析】
已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數列為等比數列,根據已知即可解得所求.【詳解】由..故答案為:.【點睛】本題考查通過遞推公式證明數列為等比數列,考查了等比的求和公式,考查學生分析問題的能力,難度較易.15、【解析】
利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關鍵在于合理變換三棱錐的頂點.16、【解析】
作出不等式組對應的平面區域,利用目標函數的幾何意義,結合目標函數的最小值,利用數形結合即可得到結論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數可視為,則為斜率為1的直線縱截距的相反數,該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數,∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關鍵.18、(1),(2)【解析】
(1),所,兩式相減,即可得到數列遞推關系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數列的前項和.【詳解】(1)因為,所,兩式相減,整理得,當時,,解得,所以數列是首項和公比均為的等比數列,即,因為,整理得,又因為,所以,所以,即,因為,所以數列是以首項和公差均為1的等差數列,所以;(2)由(1)可知,,,即.【點睛】此題考查求數列的通項公式,以及數列求和,關鍵在于對題中所給關系合理變形,發現其中的關系,裂項求和作為一類常用的求和方法,需要在平常的學習中多做積累常見的裂項方式.19、(1)整數的最大值為;(2)見解析.【解析】
(1)將不等式變形為,構造函數,利用導數研究函數的單調性并確定其最值,從而得到正整數的最大值;(2)根據(1)的結論得到,利用不等式的基本性質可證得結論.【詳解】(1)由得,令,,令,對恒成立,所以,函數在上單調遞增,,,,,故存在使得,即,從而當時,有,,所以,函數在上單調遞增;當時,有,,所以,函數在上單調遞減.所以,,,因此,整數的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導數在函數單調性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.20、(1);(2)證明見解析【解析】
(1)利用零點分段法,求出各段的取值范圍然后取并集可得結果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.21、(1)見解析(2)見解析【解析】(1)建立如圖所示的空間直角坐標系,設AC∩BD=N,連結NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機三級信息管理的基礎與進階試題及答案
- 應用能力2025年網絡規劃設計師考試的實踐要求及試題及答案
- 下學期歷史試題及答案
- 系統分析師職業角色定位試題及答案
- 物理教招試題及答案
- 系統分析師高效學習試題及答案
- 幼兒師德考試試題及答案
- 職大低壓電工考試題及答案
- 網絡規劃設計師的團隊動力與試題答案
- 中級社會工作者法律法規知識試題及答案
- T/CCS 060-2023智能化煤礦運維組織架構管理規范
- 2025安全生產月安全知識競賽題庫三(35ye)
- 中級宏觀經濟學知到課后答案智慧樹章節測試答案2025年春浙江大學
- 【MOOC】微處理器與嵌入式系統設計-電子科技大學 中國大學慕課MOOC答案
- DL-T5706-2014火力發電工程施工組織設計導則
- JT-T 1495-2024 公路水運危險性較大工程專項施工方案編制審查規程
- MOOC 創業管理-江蘇大學 中國大學慕課答案
- 保衛黃河 合唱簡譜
- 博士后研究人員接收單位意見表
- 客戶關系管理題庫
- 自動控制原理考試原題及答案
評論
0/150
提交評論