2024屆江蘇省鎮江市丹徒區、句容區達標名校中考數學模擬預測題含解析_第1頁
2024屆江蘇省鎮江市丹徒區、句容區達標名校中考數學模擬預測題含解析_第2頁
2024屆江蘇省鎮江市丹徒區、句容區達標名校中考數學模擬預測題含解析_第3頁
2024屆江蘇省鎮江市丹徒區、句容區達標名校中考數學模擬預測題含解析_第4頁
2024屆江蘇省鎮江市丹徒區、句容區達標名校中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省鎮江市丹徒區、句容區達標名校中考數學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若函數與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.22.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b23.已知點M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(x,y)一定在()A.拋物線上 B.過原點的直線上 C.雙曲線上 D.以上說法都不對4.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.5.如圖,在菱形ABCD中,AB=BD,點E,F分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結論A.只有①②. B.只有①③. C.只有②③. D.①②③.6.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件7.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.248.下列計算正確的是()A.x+x=x2B.x·x=2xC.(9.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數是()A.75° B.65° C.60° D.50°10.已知二次函數y=(x+m)2–n的圖象如圖所示,則一次函數y=mx+n與反比例函數y=的圖象可能是()A. B. C. D.11.若一個多邊形的內角和為360°,則這個多邊形的邊數是(

)A.3

B.4

C.5

D.612.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.沒有實數根 D.以上答案都不對二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知a+1a=3,則a14.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形15.計算:的結果是_____.16.計算:_______________.17.=________18.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點,BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.20.(6分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數關系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產廠家對甲種商品的出廠價下調a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據以上信息及(2)中的條件,設計出使該商場獲得最大利潤的進貨方案.21.(6分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.22.(8分)在平面直角坐標系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標軸的距離之和等于點Q到兩坐標軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.(1)已知點A的坐標為(﹣3,1),①在點R(0,4),S(2,2),T(2,﹣3)中,為點A的同族點的是;②若點B在x軸上,且A,B兩點為同族點,則點B的坐標為;(2)直線l:y=x﹣3,與x軸交于點C,與y軸交于點D,①M為線段CD上一點,若在直線x=n上存在點N,使得M,N兩點為同族點,求n的取值范圍;②M為直線l上的一個動點,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.23.(8分)太陽能光伏發電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發展的新興產業,如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F,CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結果保留根號)24.(10分)如圖,一次函數y1=kx+b的圖象與反比例函數y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數與反比例函數的解析式;求△OAB的面積.25.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.26.(12分)中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.(1)若苗圃園的面積為72平方米,求x;(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.27.(12分)某學校為弘揚中國傳統詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統計結果繪制成兩幅如圖所示的統計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數為,圖①中的a的值為;(2)求統計所抽查測試學生成績數據的平均數、眾數和中位數.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

求出兩函數組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數與反比例函數的交點問題和解方程組等知識點,關鍵是求出a、b的值.2、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D3、B【解析】

由圓周角定理得出∠MON與∠MAN的關系,從而得出x與y的關系式,進而可得出答案.【詳解】∵∠MON與∠MAN分別是弧MN所對的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(x,y)一定在過原點的直線上.故選B.【點睛】本題考查了圓周角定理及正比例函數圖像的性質,熟練掌握圓周角定理是解答本題的關鍵.4、D【解析】

解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項A、B、C的左視圖均為從左往右正方形個數為2,1,符合題意,選項D的左視圖從左往右正方形個數為2,1,1,故選D.【點睛】本題考查幾何體的三視圖.5、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.6、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.7、D【解析】分析:根據有理數的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.8、D【解析】分析:根據合并同類項、同底數冪的乘法、冪的乘方、同底數冪的除法的運算法則計算即可.解答:解:A、x+x=2x,選項錯誤;B、x?x=x2,選項錯誤;C、(x2)3=x6,選項錯誤;D、正確.故選D.9、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數,又因為∠B=∠C,所以∠C的度數可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對的圓周角相等).

故選B.

10、C【解析】試題解析:觀察二次函數圖象可知:∴一次函數y=mx+n的圖象經過第一、二、四象限,反比例函數的圖象在第二、四象限.故選D.11、B【解析】

利用多邊形的內角和公式求出n即可.【詳解】由題意得:(n-2)×180°=360°,解得n=4;故答案為:B.【點睛】本題考查多邊形的內角和,解題關鍵在于熟練掌握公式.12、B【解析】

首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數;(3)△<0?方程沒有實數根.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7【解析】

根據完全平方公式可得:原式=(a+114、B【解析】

根據平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關鍵是熟記定理.15、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減16、【解析】

先把化簡為2,再合并同類二次根式即可得解.【詳解】2-=.故答案為.【點睛】本題考查了二次根式的運算,正確對二次根式進行化簡是關鍵.17、13【解析】=2+9-4+6=13.故答案是:13.18、4【解析】

首先根據矩形的性質以及垂線的性質得到∠FDC=∠ABE,進而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點,BE=3,∴tan∠FDC=43.故答案為【點睛】本題主要考查了銳角三角函數的關系以及矩形的性質,根據已知得出tan∠FDC=tan∠AEB是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)【解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點睛:這是一道考查“圓和直線的位置關系與相似三角形的判定和性質”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質”是正確解答本題的關鍵.20、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應購進甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據總利潤=(甲的售價-甲的進價)×購進甲的數量+(乙的售價-乙的進價)×購進乙的數量代入列關系式,并化簡即可;(2)根據總成本≤18000列不等式即可求出x的取值,再根據函數的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數大于0、等于0、小于0,根據函數的增減性得出結論.詳解:(1)根據題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數關系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當50<a<60時,a﹣60<0,y隨x的增大而減小,∴當x=100時,y有最大利潤,即商場應購進甲商品100件,乙商品100件,獲利最大,②當a=60時,a﹣60=0,y=28000,即商場應購進甲商品的數量滿足100≤x≤120的整數件時,獲利最大,③當60<a<70時,a﹣60>0,y隨x的增大而增大,∴當x=120時,y有最大利潤,即商場應購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數和一元一次不等式的綜合應用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利潤的關系式:單件利潤=售價-進價,總利潤=單個利潤×數量;認真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數的增減性來解決:形如y=kx+b中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減?。?1、(30+30)米.【解析】

解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米22、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解析】

(1)∵點A的坐標為(?2,1),∴2+1=4,點R(0,4),S(2,2),T(2,?2)中,0+4=4,2+2=4,2+2=5,∴點A的同族點的是R,S;故答案為R,S;②∵點B在x軸上,∴點B的縱坐標為0,設B(x,0),則|x|=4,∴x=±4,∴B(?4,0)或(4,0);故答案為(?4,0)或(4,0);(2)①由題意,直線與x軸交于C(2,0),與y軸交于D(0,).點M在線段CD上,設其坐標為(x,y),則有:,,且.點M到x軸的距離為,點M到y軸的距離為,則.∴點M的同族點N滿足橫縱坐標的絕對值之和為2.即點N在右圖中所示的正方形CDEF上.∵點E的坐標為(,0),點N在直線上,∴.②如圖,設P(m,0)為圓心,為半徑的圓與直線y=x?2相切,∴PC=2,∴OP=1,觀察圖形可知,當m≥1時,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,再根據對稱性可知,m≤也滿足條件,∴滿足條件的m的范圍:m≤或m≥123、【解析】

過點A作,垂足為G,利用三角函數求出CG,從而求出GD,繼而求出CD.連接FD并延長與BA的延長線交于點H,利用三角函數求出CH,由圖得出EH,再利用三角函數值求出EF.【詳解】過點A作,垂足為G.則,在中,,由題意,得,∴,連接FD并延長與BA的延長線交于點H.由題意,得.在中,,∴.在中,.答:支角鋼CD的長為45cm,EF的長為.考點:三角函數的應用24、(1)反比例函數的解析式為y=,一次函數的解析式為y=﹣x+1.(2)2.【解析】

(1)根據反比例函數y2=的圖象過點A(2,3),利用待定系數法求出m,進而得出B點坐標,然后利用待定系數法求出一次函數解析式;(2)設直線y1=kx+b與x軸交于C,求出C點坐標,根據S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數的解析式為y=﹣x+1.(2)如圖,設直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數法求反比例函數、一次函數解析式以及求三角形面積等知識,根據已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關鍵.25、(1)見解析;(2)2.【解析】

(1)根據相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據銳角三角函數和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據勾股定理得:BE=∵BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論