




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶一中2023-2024學年中考聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于x的一元二次方程x2-4x+k=0有兩個相等的實數根,則k的值是()A.2 B.-2 C.4 D.-42.如圖,△ABC內接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.53.若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.14.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯結OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數是()A.1 B.2 C.3 D.45.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1086.小強是一位密碼編譯愛好者,在他的密碼手冊中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對應下列六個字:昌、愛、我、宜、游、美,現將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結果呈現的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌7.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區域面積是()A.18π B.27π C.π D.45π8.如圖1,點P從△ABC的頂點A出發,沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.249.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.1010.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.1211.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.3912.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知平行四邊形ABCD,E是邊BC的中點,聯結DE并延長,與AB的延長線交于點F.設=,=,那么向量用向量、表示為_____.14.若4a+3b=1,則8a+6b-3的值為______.15.如圖,已知在平行四邊形ABCD中,E是邊AB的中點,F在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.16.函數y=的自變量x的取值范圍為____________.17.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.18.在中,若,則的度數是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.20.(6分)王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調查,每位學生最終評價結果為主動質疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數分布直方圖和扇形統計圖(均不完整),請根據圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了
名學生;(2)在扇形統計圖中,項目“主動質疑”所在扇形的圓心角度數為
度;(3)請將頻數分布直方圖補充完整;(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?21.(6分)兩家超市同時采取通過搖獎返現金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統計并制成了圖表(如圖)獎金金額獲獎人數20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數是,在乙超市搖獎的顧客獲得獎金金額的眾數是;(2)請你補全統計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉盤,黃區20元、紅區15元、藍區10元、白區5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?22.(8分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.23.(8分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?24.(10分)某農場急需銨肥8噸,在該農場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.(1)根據圖象求出b關于a的函數解析式(包括自變量的取值范圍);(2)若農場到B公司的路程是農場到A公司路程的2倍,農場到A公司的路程為m千米,設農場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數解析式(m為常數),并向農場建議總費用最低的購買方案.25.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.26.(12分)如圖,四邊形ABCD的四個頂點分別在反比例函數與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.27.(12分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式2、C【解析】
如圖(見解析),連接BD、CD,根據圓周角定理可得,再根據相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據圓周角定理可得,再根據正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.3、D【解析】【分析】根據關于y軸的對稱點的坐標特點:橫坐標互為相反數,縱坐標不變,據此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點睛】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數,縱坐標不變是解題的關鍵.4、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.5、C【解析】
科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.【詳解】42.4億=4240000000,用科學記數法表示為:4.24×1.故選C.【點睛】考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.6、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因為x﹣y,x+y,a+b,a﹣b四個代數式分別對應愛、我,宜,昌,所以結果呈現的密碼信息可能是“愛我宜昌”,故答案選C.考點:因式分解.7、B【解析】
先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,
∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點睛】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.8、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數圖象,根據已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.9、B【解析】
平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是利用三角形中位線定理進行求解.10、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再再根據EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.11、D【解析】
原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【點睛】此題考查了立方根,以及算術平方根,熟練掌握各自的性質是解本題的關鍵.12、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點:圓周角定理二、填空題:(本大題共6個小題,每小題4分,共24分.)13、+2【解析】
根據平行四邊形的判定與性質得到四邊形DBFC是平行四邊形,則DC=BF,故AF=2AB=2DC,結合三角形法則進行解答.【詳解】如圖,連接BD,FC,∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是邊BC的中點,∴,∴EC=BE,即點E是DF的中點,∴四邊形DBFC是平行四邊形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.【點睛】此題考查了平面向量的知識、相似三角形的判定與性質以及平行四邊形的性質.注意掌握三角形法則的應用是關鍵.14、-1【解析】
先求出8a+6b的值,然后整體代入進行計算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點睛】本題考查了代數式求值,整體思想的利用是解題的關鍵.15、【解析】
根據,只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.【點睛】本題考查的知識點是平面向量,平行四邊形的性質,解題關鍵是表達出、.16、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點:函數自變量的取值范圍.17、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.18、【解析】
先根據非負數的性質求出,,再由特殊角的三角函數值求出與的值,根據三角形內角和定理即可得出結論.【詳解】在中,,,,,,,故答案為:.【點睛】本題考查了非負數的性質以及特殊角的三角函數值,熟練掌握特殊角的三角函數值是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)見解析;(3)存在,2【解析】
(1)利用正方形的性質及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當最短時,的面積最小,再根據AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時,的面積最小,當時,最短,此時,的面積最小為.【點睛】本題主要考查全等三角形的判定及性質,平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關鍵.20、(1)560;(2)54;(3)詳見解析;(4)獨立思考的學生約有840人.【解析】
(1)由“專注聽講”的學生人數除以占的百分比求出調查學生總數即可;(2)由“主動質疑”占的百分比乘以360°即可得到結果;(3)求出“講解題目”的學生數,補全統計圖即可;(4)求出“獨立思考”學生占的百分比,乘以2800即可得到結果.【詳解】(1)根據題意得:224÷40%=560(名),則在這次評價中,一個調查了560名學生;故答案為:560;(2)根據題意得:×360°=54°,則在扇形統計圖中,項目“主動質疑”所在的扇形的圓心角的度數為54度;故答案為:54;(3)“講解題目”的人數為560-(84+168+224)=84,補全統計圖如下:(4)根據題意得:2800×(人),則“獨立思考”的學生約有840人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1)10,5元;(2)補圖見解析;(3)在甲、乙兩超市參加搖獎的50名顧客平均獲獎分別為10元、8.2元;(4).【解析】
(1)根據中位數、眾數的定義解答即可;(2)根據表格中的數據補全統計圖即可;(3)根據計算平均數的公式求解即可;(4)根據扇形統計圖,結合概率公式求解即可.【詳解】(1)在甲超市搖獎的顧客獲得獎金金額的中位數是=10元,在乙超市搖獎的顧客獲得獎金金額的眾數5元,故答案為:10元、5元;(2)補全圖形如下:(3)在甲超市平均獲獎為=10(元),在乙超市平均獲獎為=8.2(元);(4)獲得獎金10元的概率是=.【點睛】本題考查了中位數及眾數的定義、平均數的計算公式及簡單概率的求法,熟知這些知識點是解決本題的關鍵.22、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應用待定系數法求解析式;(1)設出點T坐標,表示△TAC三邊,進行分類討論;(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設P(m,),則Q(m,),∵Q、R關于x=1對稱∴R(1﹣m,),①當點P在直線l左側時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數幾何綜合題,考查了二次函數性質、三角形全等和等腰三角形判定,熟練掌握相關知識,應用數形結合和分類討論的數學思想進行解題是關鍵.23、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解析】
先設每臺電腦x萬元,每臺電子白板y萬元,根據電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元列出方程組,求出x,y的值即可.【詳解】設每臺電腦x萬元,每臺電子白板y萬元.根據題意,得:解得,答:每臺電腦0.5萬元,每臺電子白板1.5萬元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是讀懂題意,找出之間的數量關系,列出二元一次方程組.24、(1)b=;(2)詳見解析.【解析】
(1)分別設兩段函數圖象的解析式,代入圖象上點的坐標求解即可;(2)先求出農場從A、B公司購買銨肥的費用,再求出農場從A、B公司購買銨肥的運輸費用,兩者之和即為總費用,可以求出總費用關于x的解析式是一次函數,根據m的取值范圍不同分兩類討論,可得出結論.【詳解】(1)有圖象可得,函數圖象分為兩部分,設第一段函數圖象為y=k1x,代入點(4,12),即12=k1×4,可得k1=3,設第二段函數圖象為y=k2x+c,代入點(4,12)、(8,32)可列出二元一次方程組,解得:k2=5,c=-8,所以函數解析式為:b=;(2)農場從A公司購買銨肥的費用為750x元,因為B公司有銨肥7噸,1≤x≤3,故農場從B公司購買銨肥的重量(8-x)肯定大于5噸,農場從B公司購買銨肥的費用為700(8-x)元,所以購買銨肥的總費用=750x+700(8-x)=50x+5600(0≤x≤3);農場從A公司購買銨肥的運輸費用為3xm元,且滿足1≤x≤3,農場從B公司購買銨肥的運輸費用為[5(8-x)-8]×2m元,所以購買銨肥的總運輸費用為3xm+[5(8-x)-8]×2m=-7mx+64m元,因此農場購買銨肥的總費用y=50x+5600-7mx+64m=(50-7m)x+5600+64m(1≤x≤3),分一下兩種情況進行討論;①當50-7m≥0即m≤時,y隨x的增加而增加,則x=1使得y取得最小值即總費用最低,此時農場銨肥的購買方案為:從A公司購買1噸,從B公司購買7噸,②當50-7m<0即m>時,y隨x的增加而減少,則x=3使得y取得最小值即總費用最低,此時農場銨肥的購買方案為:從A公司購買3噸,從B公司購買5噸.【點睛】本題主要考查了方案比較以及函數解析式的求解,解本題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漳浦招聘考試題庫及答案
- 香港 英語測試題及答案
- 2025年計算機網絡管理與安全考試題
- 軟件設計師考試中常見編程語言試題及答案
- 項目實施過程中的客戶關系管理方法試題及答案
- 新興技術對政策的挑戰試題及答案
- 深度周刊信息系統項目管理師試題及答案
- 西方國家的減貧與政治制度試題及答案
- 軟件設計師考試的新思維試題與答案
- 西方國家的選舉模式比較試題及答案
- 個人商業計劃書范文5篇
- 2025年反恐與公共安全管理職業資格考試試卷及答案
- 2025高考語文押題作文10篇
- 福建卷-2025屆高考化學全真模擬卷
- 2022隧道順光照明技術指南
- 2025年廣東省廣州市增城區中考一模化學試題(含答案)
- 2025高考英語作文考前背誦(應用文+讀后續寫)
- 河北開放大學2025年《西方行政制度》形成性考核3答案
- 人教版九年級語文中考真題匯編 《水滸傳》(2022-2024)全國中考語文真題
- 2025年鐵路列車員(初級)職業技能鑒定參考試題庫(含答案)
- 浙江省杭州市2025屆高三下學期二模試題 數學 含答案
評論
0/150
提交評論