2023-2024學年江蘇省淮安市金湖縣中考數學押題卷含解析_第1頁
2023-2024學年江蘇省淮安市金湖縣中考數學押題卷含解析_第2頁
2023-2024學年江蘇省淮安市金湖縣中考數學押題卷含解析_第3頁
2023-2024學年江蘇省淮安市金湖縣中考數學押題卷含解析_第4頁
2023-2024學年江蘇省淮安市金湖縣中考數學押題卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省淮安市金湖縣中考數學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.點是一次函數圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.2.如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續翻轉2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)3.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.4.-4的絕對值是()A.4 B. C.-4 D.5.函數的自變量x的取值范圍是()A. B. C. D.6.某自行車廠準備生產共享單車4000輛,在生產完1600輛后,采用了新技術,使得工作效率比原來提高了20%,結果共用了18天完成任務,若設原來每天生產自行車x輛,則根據題意可列方程為()A.+=18 B.=18C.+=18 D.=187.某體育用品商店一天中賣出某種品牌的運動鞋15雙,其中各種尺碼的鞋的銷售量如表所示:鞋的尺碼/cm2323.52424.525銷售量/雙13362則這15雙鞋的尺碼組成的一組數據中,眾數和中位數分別為()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,248.如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數為().A.60° B.75° C.85° D.90°9.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統計,制成了兩幅不完整的統計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數占體育社團人數的D.據此估計全校1000名八年級同學,選擇科目B的有140人10.為了解某班學生每周做家務勞動的時間,某綜合實踐活動小組對該班9名學生進行了調查,有關數據如下表.則這9名學生每周做家務勞動的時間的眾數及中位數分別是()每周做家務的時間(小時)01234人數(人)22311A.3,2.5 B.1,2 C.3,3 D.2,211.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續摸出一球.以下是利用計算機模擬的摸球試驗次數與摸出黑球次數的列表:摸球試驗次數100100050001000050000100000摸出黑球次數46487250650082499650007根據列表,可以估計出m的值是()A.5 B.10 C.15 D.2012.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,菱形OABC的頂點O是原點,頂點B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數的圖象經過點C,則k的值為.14.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經過的路線長為____cm.15.某商品原價100元,連續兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.16.把多項式9x3﹣x分解因式的結果是_____.17.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.18.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在一個不透明的盒子里,裝有三個分別寫有數字6,-2,7的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數字后放回盒子,搖勻后再隨機取出一個小球,記下數字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數字相同;兩次取出小球上的數字之和大于1.20.(6分)定義:若某拋物線上有兩點A、B關于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數y=ax2-2mx+c(a,m,c均為常數且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數圖象與y軸交于點C,且S△ABC=1.①求a的值;②當該二次函數圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.21.(6分)解不等式組:,并寫出它的所有整數解.22.(8分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經過反彈后,球剛好彈到D點位置.求BF的長.23.(8分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).24.(10分)我市正在開展“食品安全城市”創建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統計,并繪制了下列兩幅統計圖(不完整).請根據圖中信息,解答下列問題:此次共調查了名學生;扇形統計圖中D所在扇形的圓心角為;將上面的條形統計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數.25.(10分)在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發,以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.如圖1,當t=3時,求DF的長.如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.26.(12分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.27.(12分)若一個三位數的十位數字比個位數字和百位數字都大,則稱這個數為“傘數”.現從1,2,3,4這四個數字中任取3個數,組成無重復數字的三位數.(1)請畫出樹狀圖并寫出所有可能得到的三位數;(2)甲、乙二人玩一個游戲,游戲規則是:若組成的三位數是“傘數”,則甲勝;否則乙勝.你認為這個游戲公平嗎?試說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:把點代入一次函數得,.∵點在第一象限上,∴,可得,因此,即,故選B.2、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉后的圖形,如圖所示.由圖可知:每翻轉6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標為(1.5,),∴B3的坐標為(1.5+1322,),故選B.點睛:本題是規律題,能正確地尋找規律“每翻轉6次,圖形向右平移2”是解題的關鍵.3、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F,G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質;3.矩形的性質.4、A【解析】

根據絕對值的概念計算即可.(絕對值是指一個數在坐標軸上所對應點到原點的距離叫做這個數的絕對值.)【詳解】根據絕對值的概念可得-4的絕對值為4.【點睛】錯因分析:容易題.選錯的原因是對實數的相關概念沒有掌握,與倒數、相反數的概念混淆.5、D【解析】

根據二次根式的意義,被開方數是非負數.【詳解】根據題意得,解得.故選D.【點睛】本題考查了函數自變量的取值范圍的確定和分式的意義.函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數非負數.6、B【解析】

根據前后的時間和是18天,可以列出方程.【詳解】若設原來每天生產自行車x輛,根據前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應用.解題關鍵點:根據時間關系,列出分式方程.7、A【解析】【分析】根據眾數和中位數的定義進行求解即可得.【詳解】這組數據中,24.5出現了6次,出現的次數最多,所以眾數為24.5,這組數據一共有15個數,按從小到大排序后第8個數是24.5,所以中位數為24.5,故選A.【點睛】本題考查了眾數、中位數,熟練掌握中位數、眾數的定義以及求解方法是解題的關鍵.8、C【解析】試題分析:根據旋轉的性質知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數為85°.故選C.考點:旋轉的性質.9、B【解析】

A選項先求出調查的學生人數,再求選科目E的人數來判定,B選項先求出A科目人數,再利用×360°判定即可,C選項中由D的人數及總人數即可判定,D選項利用總人數乘以樣本中B人數所占比例即可判定.【詳解】解:調查的學生人數為:12÷24%=50(人),選科目E的人數為:50×10%=5(人),故A選項正確,選科目A的人數為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數為10,總人數為50人,所以選科目D的人數占體育社團人數的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統計圖及扇形統計圖,解題的關鍵是讀懂統計圖,從統計圖中找到準確信息.10、D【解析】試題解析:表中數據為從小到大排列.數據1小時出現了三次最多為眾數;1處在第5位為中位數.所以本題這組數據的中位數是1,眾數是1.故選D.考點:1.眾數;1.中位數.11、B【解析】

由概率公式可知摸出黑球的概率為5m,分析表格數據可知摸出黑球次數【詳解】解:分析表格數據可知摸出黑球次數摸球實驗次數的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應用.12、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.

故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-6【解析】

分析:∵菱形的兩條對角線的長分別是6和4,∴A(﹣3,2).∵點A在反比例函數的圖象上,∴,解得k=-6.【詳解】請在此輸入詳解!14、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經過的路線為圓心角為60°且半徑為10cm的圓弧.∴的長=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.15、20%.【解析】試題分析:根據原價為100元,連續兩次漲價x后,現價為144元,根據增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.16、x(3x+1)(3x﹣1)【解析】

提取公因式分解多項式,再根據平方差公式分解因式,從而得到答案.【詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【點睛】本題主要考查了因式分解以及平方差公式,解本題的要點在于熟知多項式分解因式的相關方法.17、1【解析】

根據三角形的中位線定理得到PQ=BC,得到相似比為,再根據相似三角形面積之比等于相似比的平方,可得到結果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.18、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據相似三角形的性質就可以求出結論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質的運用,解答時求出△AED∽△ACB是解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】

根據列表法或樹狀圖看出所有可能出現的結果共有多少種,再求出兩次取出小球上的數字相同的結果有多少種,根據概率公式求出該事件的概率.【詳解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(兩數相同)=.(2)P(兩數和大于1)=.【點睛】本題考查了利用列表法、畫樹狀圖法求等可能事件的概率.20、(1)ac<3;(3)①a=1;②m>或m<.【解析】

(1)設A

(p,q).則B

(-p,-q),把A、B坐標代入解析式可得方程組即可得到結論;

(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據三角形的面積公式列方程即可得到結果;②由①可知:拋物線解析式為y=x3-3mx-1,根據M(-1,1)、N(3,4).得到這些MN的解析式y=x+(-1≤x≤3),聯立方程組得到x3-3mx-1=x+,故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,建立新的二次函數:y=x3-(3m+)x-,根據題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結論.【詳解】(1)設A

(p,q).則B

(-p,-q),

把A、B坐標代入解析式可得:,

∴3ap3+3c=3.即p3=?,

∴?≥3,

∵ac≠3,

∴?>3,

∴ac<3;

(3)∵c=-1,

∴p3=,a>3,且C(3,-1),

∴p=±,

①S△ABC=×3×1=1,

∴a=1;

②由①可知:拋物線解析式為y=x3-3mx-1,

∵M(-1,1)、N(3,4).

∴MN:y=x+(-1≤x≤3),

依題,只需聯立在-1≤x≤3內只有一個解即可,

∴x3-3mx-1=x+,

故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,

建立新的二次函數:y=x3-(3m+)x-,

∵△=(3m+)3+11>3且c=-<3,

∴拋物線y=x3?(3m+)x?與x軸有兩個交點,且交y軸于負半軸.

不妨設方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)

則x1+x3=3m+,x1x3=?

∵方程x3?(3m+)x?=3在-1≤x≤3內只有一個解.

故分兩種情況討論:

(Ⅰ)若-1≤x1<3且x3>3:則.即:,

可得:m>.

(Ⅱ)若x1<-1且-1<x3≤3:則.即:,

可得:m<,

綜上所述,m>或m<.【點睛】本題考查了待定系數法求二次函數的解析式,一元二次方程根與系數的關系,三角形面積公式,正確的理解題意是解題的關鍵.21、﹣2,﹣1,0,1,2;【解析】

首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集;再確定解集中的所有整數解即可.【詳解】解:解不等式(1),得解不等式(2),得x≤2所以不等式組的解集:-3<x≤2它的整數解為:-2,-1,0,1,222、BF的長度是1cm.【解析】

利用“兩角法”證得△BEF∽△CDF,利用相似三角形的對應邊成比例來求線段CF的長度.【詳解】解:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的長度是1cm.【點睛】本題主要考查相似三角形的判定和性質,關鍵要掌握:有兩角對應相等的兩三角形相似;兩三角形相似,對應邊的比相等.23、AB≈3.93m.【解析】

想求得AB長,由等腰三角形的三線合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函數可以求出.【詳解】∵AC=BC,D是AB的中點,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【點睛】本題考查了三角函數,直角三角形,等腰三角形等知識,關鍵利用了正切函數的定義求出AD,然后就可以求出AB.24、(1)120;(2)54°;(3)詳見解析(4)1.【解析】

(1)根據B的人數除以占的百分比即可得到總人數;(2)先根據題意列出算式,再求出即可;(3)先求出對應的人數,再畫出即可;(4)先列出算式,再求出即可.【詳解】(1)(25+23)÷40%=120(名),即此次共調查了120名學生,故答案為120;(2)360°×=54°,即扇形統計圖中D所在扇形的圓心角為54°,故答案為54°;(3)如圖所示:;(4)800×=1(人),答:估計對食品安全知識“非常了解”的學生的人數是1人.【點睛】本題考查了條形統計圖、扇形統計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結合是解題的關鍵.25、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解析】

(1)當t=3時,點E為AB的中點,∵A(8,0),C(0,6),∴OA=8,OC=6,∵點D為OB的中點,∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論