廣東省佛山市南海區石門實驗中學重點中學2024年中考數學最后沖刺模擬試卷含解析_第1頁
廣東省佛山市南海區石門實驗中學重點中學2024年中考數學最后沖刺模擬試卷含解析_第2頁
廣東省佛山市南海區石門實驗中學重點中學2024年中考數學最后沖刺模擬試卷含解析_第3頁
廣東省佛山市南海區石門實驗中學重點中學2024年中考數學最后沖刺模擬試卷含解析_第4頁
廣東省佛山市南海區石門實驗中學重點中學2024年中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省佛山市南海區石門實驗中學重點中學2024年中考數學最后沖刺模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.不等式4-2x>0的解集在數軸上表示為()A. B. C. D.2.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.3.已知二次函數的圖象如圖所示,若,是這個函數圖象上的三點,則的大小關系是()A. B. C. D.4.在△ABC中,AB=3,BC=4,AC=2,D,E,F分別為AB,BC,AC中點,連接DF,FE,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.115.某廠進行技術創新,現在每天比原來多生產30臺機器,并且現在生產500臺機器所需時間與原來生產350臺機器所需時間相同.設現在每天生產x臺機器,根據題意可得方程為()A. B. C. D.6.不等式組的解集表示在數軸上正確的是()A. B. C. D.7.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°8.cos60°的值等于()A.1 B. C. D.9.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經測量AB=2m,則樹高為()米A. B. C.+1 D.310.如圖,A、B、C三點在正方形網格線的交點處,若將△ABC繞著點A逆時針旋轉得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在中,::1:2:3,于點D,若,則______12.如圖,李明從A點出發沿直線前進5米到達B點后向左旋轉的角度為α,再沿直線前進5米,到達點C后,又向左旋轉α角度,照這樣走下去,第一次回到出發地點時,他共走了45米,則每次旋轉的角度α為_____.13.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉得到△PDE(點C、Q分別與點D、E對應),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.14.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.若分式的值為正,則實數的取值范圍是__________________.17.如圖,在平面直角坐標系中,正方形ABOC和正方形DOFE的頂點B,F在x軸上,頂點C,D在y軸上,且S△ADC=4,反比例函數y=(x>0)的圖像經過點E,則k=_______。三、解答題(共7小題,滿分69分)18.(10分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發,以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發.如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結果保留根號)19.(5分)為加快城鄉對接,建設美麗鄉村,某地區對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)20.(8分)解分式方程:=121.(10分)如圖所示,內接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.22.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.23.(12分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數據的平均數、眾數和中位數:(3)根據樣本數據,估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。24.(14分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如圖所示的尚不完整的統計圖:根據以上統計圖,解答下列問題:本次接受調查的市民共有人;扇形統計圖中,扇形B的圓心角度數是;請補全條形統計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據解一元一次不等式基本步驟:移項、系數化為1可得.【詳解】移項,得:-2x>-4,

系數化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.2、B【解析】

根據相似三角形的判定方法一一判斷即可.【詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點睛】本題考查相似三角形的性質,解題的關鍵是學會利用數形結合的思想解決問題,屬于中考常考題型.3、A【解析】

先求出二次函數的對稱軸,結合二次函數的增減性即可判斷.【詳解】解:二次函數的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據自變量的大小,比較函數值的大小,解題的關鍵是熟悉二次函數的增減性.4、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.5、A【解析】

根據現在生產500臺機器所需時間與原計劃生產350臺機器所需時間相同,所以可得等量關系為:現在生產500臺機器所需時間=原計劃生產350臺機器所需時間.【詳解】現在每天生產x臺機器,則原計劃每天生產(x﹣30)臺機器.依題意得:,故選A.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.6、C【解析】

根據題意先解出的解集是,把此解集表示在數軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.7、B【解析】

先根據多邊形的內角和公式分別求得正六邊形和正五邊形的每一個內角的度數,再根據多邊形的內角和公式求得∠APG的度數.【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內角與外角,關鍵是熟悉多邊形內角和定理:(n﹣2)?180(n≥3)且n為整數).8、A【解析】

根據特殊角的三角函數值直接得出結果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數值是解題的關鍵.9、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.10、D【解析】

過C點作CD⊥AB,垂足為D,根據旋轉性質可知,∠B′=∠B,把求tanB′的問題,轉化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據旋轉性質可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉的性質,旋轉后對應角相等;三角函數的定義及三角函數值的求法.二、填空題(共7小題,每小題3分,滿分21分)11、2.1【解析】

先求出△ABC是∠A等于30°的直角三角形,再根據30°角所對的直角邊等于斜邊的一半求解.【詳解】解:根據題意,設∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【點睛】本題主要考查含30度角的直角三角形的性質和三角形內角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關鍵.12、.【解析】

根據共走了45米,每次前進5米且左轉的角度相同,則可計算出該正多邊形的邊數,再根據外角和計算左轉的角度.【詳解】連續左轉后形成的正多邊形邊數為:,則左轉的角度是.故答案是:.【點睛】本題考查了多邊形的外角計算,正確理解多邊形的外角和是360°是關鍵.13、1【解析】

連接AD,根據PQ∥AB可知∠ADQ=∠DAB,再由點D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據勾股定理可知,AQ=11-4x,故可得出x的值,進而得出結論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,

∴CP=3x=1;故答案為:1.【點睛】本題考查平行線的性質、旋轉變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質等知識,解題的關鍵是學會利用參數解決問題,屬于中考常考題型.14、。【解析】試題分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。15、1【解析】

根據向量的三角形法則表示出CB,再根據BC、AD的關系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵.16、x>0【解析】【分析】分式值為正,則分子與分母同號,據此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.17、8【解析】

設正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,BF=OB+OF=m+n,然后根據S△ADF=S梯形ABOD+S△DOF-S△ABF=4,得到關于n的方程,解方程求得n的值,最后根據系數k的幾何意義求得即可.【詳解】設正方形ABOC和正方形DOFE的邊長分別是m、n,則AB=OB=m,DE=EF=OF=n,∴BF=OB+OF=m+n,,∴=8,∵點E(n.n)在反比例函數y=kx(x>0)的圖象上,∴k==8,故答案為8.【點睛】本題考查了正方形的性質和反比例函數圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.三、解答題(共7小題,滿分69分)18、李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A【解析】過點A作AD⊥BC于點D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分鐘)答:李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A19、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【解析】

(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.20、x=1【解析】

分式方程變形后去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】化為整式方程得:2﹣3x=x﹣2,解得:x=1,經檢驗x=1是原方程的解,所以原方程的解是x=1.【點睛】此題考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.解分式方程一定注意要驗根.21、(1)見解析;(2)成立;(3)【解析】

(1)根據圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據三角形內角和定理求出即可;(2)根據圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據圓周角定理得:,∴,∴由三角形內角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設,,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關鍵,綜合性比較強,難度偏大.22、(1)見解析(2)6【解析】

(1)利用對應兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論