




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省鄭州市桐柏一中學2024年畢業升學考試模擬卷數學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.2.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐3.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.4.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④5.某校舉行運動會,從商場購買一定數量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數量與用350元購買筆袋的數量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.6.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm7.的值是A.±3 B.3 C.9 D.818.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.9.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.10.把8a3﹣8a2+2a進行因式分解,結果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2二、填空題(本大題共6個小題,每小題3分,共18分)11.二次函數y=x2-2x+1的對稱軸方程是x=_______.12.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.13.從長度分別是3,4,5的三條線段中隨機抽出一條,與長為2,3的兩條線段首尾順次相接,能構成三角形的概率是_______.14.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.15.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.16.已知一組數據4,x,5,y,7,9的平均數為6,眾數為5,則這組數據的中位數是_____.三、解答題(共8題,共72分)17.(8分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.18.(8分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數.19.(8分)某校初三進行了第三次模擬考試,該校領導為了了解學生的數學考試情況,抽樣調查了部分學生的數學成績,并將抽樣的數據進行了如下整理.(1)填空_______,_______,數學成績的中位數所在的等級_________.(2)如果該校有1200名學生參加了本次模擬測,估計等級的人數;(3)已知抽樣調查學生的數學成績平均分為102分,求A級學生的數學成績的平均分數.①如下分數段整理樣本等級等級分數段各組總分人數48435741712②根據上表繪制扇形統計圖20.(8分)解方程組.21.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.22.(10分)如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.23.(12分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統計圖,根據圖中所經信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數,并將條形統計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.24.在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;(II)如圖②,當α=60°時,求點C′的坐標;(III)當點B,D′,C′共線時,求點C′的坐標(直接寫出結果即可).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】【分析】根據在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.2、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.3、C【解析】
先利用三角函數求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.4、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.5、B【解析】試題分析:設每個筆記本的價格為x元,根據“用200元購買筆記本的數量與用350元購買筆袋的數量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程6、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數值.7、C【解析】試題解析:∵∴的值是3故選C.8、B【解析】
先根據翻折變換的性質得到△DEF≌△AEF,再根據等腰三角形的性質及三角形外角的性質可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質、等腰直角三角形的性質、勾股定理、三角形外角的性質,涉及面較廣,但難易適中.9、D【解析】
根據中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、C【解析】
首先提取公因式2a,進而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
利用公式法可求二次函數y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數基本性質中的對稱軸公式;也可用配方法解決.12、1.【解析】
根據(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【點睛】考查了平方差,關鍵是掌握(a+b)(a-b)=a1-b1.13、【解析】共有3種等可能的結果,它們是:3,2,3;4,2,3;5,2,3;其中三條線段能夠成三角形的結果為2,所以三條線段能構成三角形的概率=.故答案為.14、1【解析】分析:首先根據正比例函數得出a的值,然后將交點坐標代入反比例函數解析式得出k的值.詳解:將(a,1)代入正比例函數可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數法求函數解析式,屬于基礎題型.根據正比例函數得出交點坐標是解題的關鍵.15、-4【解析】:由反比例函數解析式可知:系數,∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-416、1.1【解析】【分析】先判斷出x,y中至少有一個是1,再用平均數求出x+y=11,即可得出結論.【詳解】∵一組數據4,x,1,y,7,9的眾數為1,∴x,y中至少有一個是1,∵一組數據4,x,1,y,7,9的平均數為6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一個是1,另一個是6,∴這組數為4,1,1,6,7,9,∴這組數據的中位數是×(1+6)=1.1,故答案為:1.1.【點睛】本題考查了眾數、平均數、中位數等概念,熟練掌握眾數、平均數、中位數的概念、判斷出x,y中至少有一個是1是解本題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)【解析】
(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.18、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內角和等于180°,解得:x=36°,從而得到結論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質.19、(1)6;8;B;(2)120人;(3)113分.【解析】
(1)根據表格中的數據和扇形統計圖中的數據可以求得本次抽查的人數,從而可以得到m、n的值,從而可以得到數學成績的中位數所在的等級;
(2)根據表格中的數據可以求得D等級的人數;
(3)根據表格中的數據,可以計算出A等級學生的數學成績的平均分數.【詳解】(1)本次抽查的學生有:(人),
,
數學成績的中位數所在的等級B,
故答案為:6,11,B;
(2)120(人),
答:D等級的約有120人;
(3)由表可得,
A等級學生的數學成績的平均分數:(分),
即A等級學生的數學成績的平均分是113分.【點睛】本題考查了扇形統計圖、中位數、加權平均數,解答本題的關鍵是明確題意,利用數形結合的思想解答.20、或.【解析】
把y=x代入,解得x的值,然后即可求出y的值;【詳解】把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,當x=﹣2時,y=﹣2,當x=1時,y=1,∴原方程組的解是或.【點睛】本題考查了高次方程的解法,關鍵是用代入法先求出一個未知數,再代入求出另一個未知數.21、(1)詳見解析;(2)4.【解析】試題分析:(1)連結OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質.22、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質;2.勾股定理;3.相似三角形的判定與性質.23、(1)200;(2)72°,作圖見解析;(3).【解析】
(1)用一等獎的人數除以所占的百分比求出總人數;(2)用總人數乘以二等獎的人數所占的百分比求出二等獎的人數,補全統計圖,再用360°乘以二等獎的人數所占的百分比即可求出“二等獎”對應的扇形圓心角度數;(3)用獲得一等獎和二等獎的人數除以總人數即可得出答案.【詳解】解:(1)這次知識競賽共有學生=200(名);(2)二等獎的人數是:200×(1﹣10%﹣24%﹣46%)=40(人),補圖如下:“二等獎”對應的扇形圓心角度數是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【點睛】本題主要考查了條形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共政策對青少年成長的支持試題及答案
- 跨國經驗對公共政策局勢的啟示試題及答案
- 項目管理中的成果與評估試題及答案
- 網絡工程師考試真題深度解析試題及答案
- 公共政策分析中的定量研究方法運用試題及答案
- 西方政治制度中的社會公平試題及答案
- 政策分析的基本工具與方法試題及答案
- 機電工程考試全智攻略與試題及答案
- 機電工程綜合考試模擬題試題及答案2025
- 軟件設計師考試分析能力試題及答案
- 基于《山海經》神祇形象的青少年解壓文具設計研究
- 教育與美好人生知到智慧樹章節測試課后答案2024年秋鄭州師范學院
- DB15T 3727-2024溫拌再生瀝青混合料超薄磨耗層碳排放核算技術規程
- 2025年新高考歷史預測模擬試卷黑吉遼蒙卷(含答案解析)
- 傳染病疫情報告制度及報告流程
- DBJ50-T -212-2015 機制排煙氣道系統應用技術規程
- 世界讀書日主題班會模板5
- 水庫建設投資估算與資金籌措
- 金屬雕花板保溫施工方案
- 涉密計算機保密培訓
- T-GXAS 767-2024 尿液中汞的測定 氫化物發生原子熒光法
評論
0/150
提交評論