




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
19UCI816-ARTIFICIALINTELLIGENCEANDROBOTICS
UNIT1
ArtificialIntelligenceisamethodofmakingacomputer,acomputer-controlledrobot,orasoftwarethinkintelligentlylikethehumanmind.AIisaccomplishedbystudyingthepatternsofthehumanbrainandbyanalyzingthecognitiveprocess.Theoutcomeofthesestudiesdevelopsintelligentsoftwareandsystems.
Artificialintelligenceallowsmachinestounderstandandachievespecificgoals.AIincludesmachinelearningviadeeplearning.Theformerreferstomachinesautomaticallylearningfromexistingdatawithoutbeingassistedbyhumanbeings.Deeplearningallowsthemachinetoabsorbhugeamountsofunstructureddatasuchastext,images,andaudio.
HistoryofArtificialIntelligence
ArtificialIntelligenceisnotanewwordandnotanewtechnologyforresearchers.Thistechnologyismucholderthanyouwouldimagine.EventherearethemythsofMechanicalmeninAncientGreekandEgyptianMyths.FollowingaresomemilestonesinthehistoryofAIwhichdefinesthejourneyfromtheAIgenerationtotilldatedevelopment.
ThebirthofArtificialIntelligence(1952-1956)
Year1955:
AnAllenNewellandHerbertA.Simoncreatedthe"firstartificialintelligenceprogram"Whichwasnamedas
"LogicTheorist".Thisprogramhadproved38of52Mathematicstheorems,andfindnewandmoreelegantproofsforsometheorems.
Year1956:
Theword"ArtificialIntelligence"firstadoptedbyAmericanComputerscientistJohnMcCarthyattheDartmouthConference.Forthefirsttime,AIcoinedasanacademicfield.
Atthattimehigh-levelcomputerlanguagessuchasFORTRAN,LISP,orCOBOLwereinvented.AndtheenthusiasmforAIwasveryhighatthattime.
Thegoldenyears-Earlyenthusiasm(1956-1974)
Year1966:
Theresearchersemphasizeddevelopingalgorithmswhichcansolvemathematicalproblems.JosephWeizenbaumcreatedthefirstchatbotin1966,whichwasnamedasELIZA.
Year1972:
ThefirstintelligenthumanoidrobotwasbuiltinJapanwhichwasnamedasWABOT-1.
ThefirstAIwinter(1974-1980)
Thedurationbetweenyears1974to1980wasthefirstAIwinterduration.AIwinterreferstothetimeperiodwherecomputerscientistdealtwithasevereshortageoffundingfromgovernmentforAIresearches.
DuringAIwinters,aninterestofpublicityonartificialintelligencewasdecreased.
AboomofAI(1980-1987)
Year1980:
AfterAIwinterduration,AIcamebackwith"ExpertSystem".Expertsystemswereprogrammedthatemulatethedecision-makingabilityofahumanexpert.
IntheYear1980,thefirstnationalconferenceoftheAmericanAssociationofArtificialIntelligence
washeldatStanfordUniversity.
ThesecondAIwinter(1987-1993)
Thedurationbetweentheyears1987to1993wasthesecondAIWinterduration.
AgainInvestorsandgovernmentstoppedinfundingforAIresearchasduetohighcostbutnotefficientresult.TheexpertsystemsuchasXCONwasverycosteffective.
Theemergenceofintelligentagents(1993-2011)
Year1997:
Intheyear1997,IBMDeepBluebeatsworldchesschampion,GaryKasparov,andbecamethefirstcomputertobeataworldchesschampion.
Year2002:
forthefirsttime,AIenteredthehomeintheformofRoomba,avacuumcleaner.
Year2006:
AIcameintheBusinessworldtilltheyear2006.CompanieslikeFacebook,Twitter,andNetflixalsostartedusingAI.
Deeplearning,bigdataandartificialgeneralintelligence(2011-present)
Year2011:
Intheyear2011,IBM'sWatsonwonjeopardy,aquizshow,whereithadtosolvethecomplexquestionsaswellasriddles.Watsonhadprovedthatitcouldunderstandnaturallanguageandcansolvetrickyquestionsquickly.
Year2012:
GooglehaslaunchedanAndroidappfeature"Googlenow",whichwasabletoprovideinformationtotheuserasaprediction.
Year2014:
Intheyear2014,Chatbot"EugeneGoostman"wonacompetitionintheinfamous"Turingtest."
Year2018:
The"ProjectDebater"fromIBMdebatedoncomplextopicswithtwomasterdebatersandalsoperformedextremelywell.
GooglehasdemonstratedanAIprogram"Duplex"whichwasavirtualassistantandwhichhadtakenhairdresserappointmentoncall,andladyonothersidedidn'tnoticethatshewastalkingwiththemachine.
NowAIhasdevelopedtoaremarkablelevel.TheconceptofDeeplearning,bigdata,anddatasciencearenowtrendinglikeaboom.NowadayscompanieslikeGoogle,Facebook,IBM,andAmazonareworkingwithAIandcreatingamazingdevices.ThefutureofArtificialIntelligenceisinspiringandwillcomewithhighintelligence.
Actinghumanly
ThefirstproposalforsuccessinbuildingaprogramandactshumanlywastheTuringTest.Tobeconsideredintelligentaprogrammustbeabletoactsufficientlylikeahumantofoolaninterrogator.Ahumaninterrogatestheprogramandanotherhumanviaaterminalsimultaneously.Ifafterareasonableperiod,theinterrogatorcannottellwhichiswhich,theprogrampasses.
Topassthistestrequires:
naturallanguageprocessing
knowledgerepresentation
automatedreasoning
machinelearning
Thistestavoidsphysicalcontactandconcentrateson"higherlevel"mentalfaculties.A
total
Turingtestwouldrequiretheprogramtoalsodo:
computervision
robotics
ThinkingHumanly
Thisrequires"gettinginside"ofthehumanmindtoseehowitworksandthencomparingourcomputerprogramstothis.Thisiswhat
cognitive
science
attemptstodo.Anotherwaytodothisistoobserveahumanproblemsolvingandarguethatone'sprogramsgoaboutproblemsolvinginasimilarway.
Example:
GPS(GeneralProblemSolver)wasanearlycomputerprogramthatattemptedtomodelhumanthinking.ThedeveloperswerenotsomuchinterestedinwhetherornotGPSsolvedproblemscorrectly.Theyweremoreinterestedinshowingthatitsolvedproblemslikepeople,goingthroughthesamestepsandtakingaroundthesameamountoftimetoperformthosesteps.
ThinkingRationally
Aristotlewasoneofthefirsttoattempttocodify"thinking".His
syllogisms
providedpatternsofargumentstructurethatalwaysgavecorrectconclusions,givingcorrectpremises.
Example:Allcomputersuseenergy.Usingenergyalwaysgeneratesheat.Therefore,allcomputersgenerateheat.
Thisinitiatethefieldof
logic.Formallogicwasdevelopedinthelatenineteenthcentury.Thiswasthefirststeptowardenablingcomputerprogramstoreasonlogically.
By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionoftheprobleminlogicalnotationandfindthesolution,ifoneexisted.The
logicist
traditioninAIhopestobuildonsuchprogramstocreateintelligence.
Therearetwomainobstaclestothisapproach:First,itisdifficulttomakeinformalknowledgepreciseenoughtousethelogicistapproachparticularlywhenthereisuncertaintyintheknowledge.Second,thereisabigdifferencebetweenbeingabletosolveaprobleminprincipleanddoingsoinpractice.
ActingRationally:Therationalagentapproach
Actingrationallymeansactingsoastoachieveone'sgoals,givenone'sbeliefs.An
agent
isjustsomethingthatperceivesandacts.
InthelogicalapproachtoAI,theemphasisisoncorrectinferences.Thisisoftenpartofbeingarationalagentbecauseonewaytoactrationallyistoreasonlogicallyandthenactononesconclusions.Butthisisnotallofrationalitybecauseagentsoftenfindthemselvesinsituationswherethereisnoprovablycorrectthingtodo,yettheymustdosomething.
Therearealsowaystoactrationallythatdonotseemtoinvolveinference,e.g.,reflexactions.
ThestudyofAIasrationalagentdesignhastwoadvantages:
Itismoregeneralthanthelogicalapproachbecausecorrectinferenceisonlyausefulmechanismforachievingrationality,notanecessaryone.
Itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviourorhumanthoughtbecauseastandardofrationalitycanbedefinedindependentofhumans.
Achievingperfectrationalityincomplexenvironmentsisnotpossiblebecausethecomputationaldemandsaretoohigh.However,wewillstudyperfectrationalityasastartingplace.
cognitivemodeling
Cognitivemodellingisanareaofcomputersciencethatdealswithsimulatinghumanproblem-solvingandmentalprocessinginacomputerizedmodel.Suchamodelcanbeusedtosimulateorpredicthumanbehaviourorperformanceontaskssimilartotheonesmodelledandimprovehuman-computerinteraction
Cognitivemodellingisusedinnumerousartificialintelligence(
AI
)applications,suchas
expertsystems
,
naturallanguageprocessing
,
neuralnetworks
,andinroboticsandvirtualrealityapplications.Cognitivemodelsarealsousedtoimproveproductsinmanufacturingsegments,suchas
humanfactors
,engineering,andcomputergameanduserinterfacedesign.
Anadvancedapplicationofcognitivemodellingisthecreationofcognitivemachines,whichareAIprogramsthatapproximatesomeareasofhumancognition.OneofthegoalsofSandia'sprojectistomakehuman-computerinteractionmorelikeaninteractionbetweentwohumans.
Typesofcognitivemodels
Somehighlysophisticatedprogramsmodelspecificintellectualprocesses.Techniquessuchasdiscrepancydetectionareusedtoimprovethesecomplexmodels.
Discrepancydetectionsystemssignalwhenthereisadifferencebetweenanindividual'sactualstateorbehaviorandtheexpectedstateorbehaviorasperthecognitivemodel.Thatinformationisthenusedtoincreasethecomplexityofthemodel.
Anothertypeofcognitivemodelistheneuralnetwork.Thismodelwasfirsthypothesizedinthe1940s,butithasonlyrecentlybecomepracticalthankstoadvancementsindataprocessingandtheaccumulationoflargeamountsofdatatotrain
algorithms
.
Neuralnetworksworksimilarlytothehumanbrainbyrunningtrainingdatathroughalargenumberofcomputationalnodes,calledartificialneurons,whichpassinformationbackandforthbetweeneachother.Byaccumulatinginformationinthisdistributedway,applicationscanmakepredictionsaboutfutureinputs.
R
einforcementlearning
isanincreasinglyprominentareaofcognitivemodeling.Thisapproachhasalgorithmsrunthroughmanyiterationsofataskthattakesmultiplesteps,incentivizingactionsthateventuallyproducepositiveoutcomes,whilepenalizingactionsthatleadtonegativeones.ThisisaprimarypartoftheAIalgorithmthatGoogle's
DeepMind
usedforitsAlphaGoapplication,whichbestedthetophumanGoplayersin2016
Thesemodels,whichcanalsobeusedinnaturallanguageprocessingandsmartassistantapplications,haveimprovedhuman-computerinteraction,makingitpossibleformachinestohaverudimentaryconversationswithhumans.
AgentsinArtificialIntelligence
AnAIsystemcanbedefinedasthestudyoftherationalagentanditsenvironment.Theagentssensetheenvironmentthroughsensorsandactontheirenvironmentthroughactuators.AnAIagentcanhavementalpropertiessuchasknowledge,belief,intention,etc.
WhatisanAgent?
Anagentcanbeanythingthatperceiveitsenvironmentthroughsensorsandactuponthatenvironmentthroughactuators.AnAgentrunsinthecycleof
perceiving,
thinking,and
acting.Anagentcanbe:
Human-Agent:
Ahumanagenthaseyes,ears,andotherorganswhichworkforsensorsandhand,legs,vocaltractworkforactuators.
RoboticAgent:
Aroboticagentcanhavecameras,infraredrangefinder,NLPforsensorsandvariousmotorsforactuators.
SoftwareAgent:
Softwareagentcanhavekeystrokes,filecontentsassensoryinputandactonthoseinputsanddisplayoutputonthescreen.
Sensor:
Sensorisadevicewhichdetectsthechangeintheenvironmentandsendstheinformationtootherelectronicdevices.Anagentobservesitsenvironmentthroughsensors.
Actuators:
Actuatorsarethecomponentofmachinesthatconvertsenergyintomotion.Theactuatorsareonlyresponsibleformovingandcontrollingasystem.Anactuatorcanbeanelectricmotor,gears,rails,etc.
Effectors:
Effectorsarethedeviceswhichaffecttheenvironment.Effectorscanbelegs,wheels,arms,fingers,wings,fins,anddisplayscreen.
IntelligentAgents:
Anintelligentagentisanautonomousentitywhichactsuponanenvironmentusingsensorsandactuatorsforachievinggoals.Anintelligentagentmaylearnfromtheenvironmenttoachievetheirgoals.Athermostatisanexampleofanintelligentagent.
FollowingarethemainfourrulesforanAIagent:
Rule1:
AnAIagentmusthavetheabilitytoperceivetheenvironment.
Rule2:
Theobservationmustbeusedtomakedecisions.
Rule3:
Decisionshouldresultinanaction.
Rule4:
TheactiontakenbyanAIagentmustbearationalaction.
RationalAgent:
Arationalagentisanagentwhichhasclearpreference,modelsuncertainty,andactsinawaytomaximizeitsperformancemeasurewithallpossibleactions.
Arationalagentissaidtoperformtherightthings.AIisaboutcreatingrationalagentstouseforgametheoryanddecisiontheoryforvariousreal-worldscenarios.
ForanAIagent,therationalactionismostimportantbecauseinAIreinforcementlearningalgorithm,foreachbestpossibleaction,agentgetsthepositiverewardandforeachwrongaction,anagentgetsanegativereward.
StructureofanAIAgent
ThetaskofAIistodesignanagentprogramwhichimplementstheagentfunction.Thestructureofanintelligentagentisacombinationofarchitectureandagentprogram.Itcanbeviewedas:
Agent
=
Architecture
+
Agent
program
FollowingarethemainthreetermsinvolvedinthestructureofanAIagent:
Architecture:
ArchitectureismachinerythatanAIagentexecuteson.
AgentFunction:
Agentfunctionisusedtomapapercepttoanaction.
ExampleofAgentswiththeirPEASrepresentation
Agent
Performancemeasure
Environment
Actuators
Sensors
1.MedicalDiagnose
Healthypatient
Minimizedcost
Patient
Hospital
Staff
Tests
Treatments
Keyboard
(Entryofsymptoms)
2.VacuumCleaner
Cleanness
Efficiency
Batterylife
Security
Room
Table
Woodfloor
Carpet
Variousobstacles
Wheels
Brushes
VacuumExtractor
Camera
Dirtdetectionsensor
Cliffsensor
BumpSensor
InfraredWallSensor
3.Part-pickingRobot
Percentageofpartsincorrectbins.
Conveyorbeltwithparts,
Bins
JointedArms
Hand
Camera
Jointanglesensors.
ProblemSolvinginArtificialIntelligence
ThereflexagentofAIdirectlymapsstatesintoaction.Whenevertheseagentsfailtooperateinanenvironmentwherethestateofmappingistoolargeandnoteasilyperformedbytheagent,thenthestatedproblemdissolvesandsenttoaproblem-solvingdomainwhichbreaksthelargestoredproblemintothesmallerstorageareaandresolvesonebyone.Thefinalintegratedactionwillbethedesiredoutcomes.
Onthebasisoftheproblemandtheirworkingdomain,differenttypesofproblem-solvingagentdefinedanduseatanatomiclevelwithoutanyinternalstatevisiblewithaproblem-solvingalgorithm.Theproblem-solvingagentperformspreciselybydefiningproblemsandseveralsolutions.Sowecansaythatproblemsolvingisapartofartificialintelligencethatencompassesanumberoftechniquessuchasatree,B-tree,heuristicalgorithmstosolveaproblem.
Wecanalsosaythataproblem-solvingagentisaresult-drivenagentandalwaysfocusesonsatisfyingthegoals.
Stepsproblem-solvinginAI:
TheproblemofAIisdirectlyassociatedwiththenatureofhumansandtheiractivities.Soweneedanumberoffinitestepstosolveaproblemwhichmakeshumaneasyworks.
Thesearethefollowingstepswhichrequiresolvingaproblem:
GoalFormulation:
Thisoneisthefirstandsimplestepinproblem-solving.Itorganizesfinitestepstoformulatetarget/goalswhichrequiresomeactiontoachievethegoal.TodaytheformulationofthegoalisbasedonAIagents.
Problemformulation:
Itisoneofthecorestepsofproblem-solvingwhichdecideswhatactionshouldbetakentoachievetheformulatedgoal.InAIthiscorepartisdependentuponsoftwareagentwhichconsistedofthefollowingcomponentstoformulatetheassociatedproblem.
Componentstoformulatetheassociatedproblem:
InitialState:
ThisstaterequiresaninitialstatefortheproblemwhichstartstheAIagenttowardsaspecifiedgoal.Inthisstatenewmethodsalsoinitializeproblemdomainsolvingbyaspecificclass.
Action:
Thisstageofproblemformulationworkswithfunctionwithaspecificclasstakenfromtheinitialstateandallpossibleactionsdoneinthisstage.
Transition:
Thisstageofproblemformulationintegratestheactualactiondonebythepreviousactionstageandcollectsthefinalstagetoforwardittotheirnextstage.
Goaltest:
Thisstagedeterminesthatthespecifiedgoalachievedbytheintegratedtransitionmodelornot,wheneverthegoalachievesstoptheactionandforwardintothenextstagetodeterminesthecosttoachievethegoal.
Pathcosting:
Thiscomponentofproblem-solvingnumericalassignedwhatwillbethecosttoachievethegoal.Itrequiresallhardwaresoftwareandhumanworkingcost.
Typesofsearchalgorithms:
Therearefortoomanypowerfulsearchalgorithmsouttheretofitinasinglearticle.Instead,thisarticlewilldiscuss
six
ofthefundamentalsearchalgorithms,dividedinto
two
categories,asshownbelow.
UninformedSearchAlgorithms:
Thesearchalgorithmsinthissectionhavenoadditionalinformationonthegoalnodeotherthantheoneprovidedintheproblemdefinition.Theplanstoreachthegoalstatefromthestartstatedifferonlybytheorderand/orlengthofactions.Uninformedsearchisalsocalled
Blindsearch.
Thesealgorithmscanonlygeneratethesuccessorsanddifferentiatebetweenthegoalstateandnongoalstate.
Thefollowinguninformedsearchalgorithmsarediscussedinthissection.
DepthFirstSearch
BreadthFirstSearch
UniformCostSearch
Eachofthesealgorithmswillhave:
Aproblem
graph,
containingthestartnodeSandthegoalnodeG.
A
strategy,
describingthemannerinwhichthegraphwillbetraversedtogettoG.
A
fringe,
whichisadatastructureusedtostoreallthepossiblestates(nodes)thatyoucangofromthecurrentstates.
A
tree,
thatresultswhiletraversingtothegoalnode.
Asolution
plan,
whichthesequenceofnodesfromStoG.
DepthFirstSearch
:
Depth-firstsearch(DFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Thealgorithmstartsattherootnode(selectingsomearbitrarynodeastherootnodeinthecaseofagraph)andexploresasfaraspossiblealongeachbranchbeforebacktracking.
Ituseslastin-first-outstrategyandhenceitisimplementedusingastack.
Example:
Question.
WhichsolutionwouldDFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsDFStraversesthetree“deepestnodefirst”,itwouldalwayspickthedeeperbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
?S->A->B->C->G
Breadth-firstsearch(BFS)isanalgorithmfortraversingorsearchingtreeorgraphdatastructures.Itstartsatthetreeroot(orsomearbitrarynodeofagraph,sometimesreferredtoasa‘searchkey’),andexploresalloftheneighbornodesatthepresentdepthpriortomovingontothenodesatthenextdepthlevel.
Itisimplementedusingaqueue.
Example:
Question.
WhichsolutionwouldBFSfindtomovefromnodeStonodeGifrunonthegraphbelow?
Solution.
Theequivalentsearchtreefortheabovegraphisasfollows.AsBFStraversesthetree“shallowestnodefirst”,itwouldalwayspicktheshallowerbranchuntilitreachesthesolution(oritrunsoutofnodes,andgoestothenextbranch).Thetraversalisshowninbluearrows.
Path:
S->D->G
InformedSearchingAlgorithms
Informedsearchalgorithmscontaininformationaboutthegoalstate.Thiswillhelpinmoreefficientsearching.Itcontainsanarrayofknowledgeabouthowcloseisthegoalstatetothepresentstate,pathcost,howtoreachthegoal,etc.Informedsearchalgorithmsareusefulinlargedatabaseswhereuninformedsearchalgorithmscan’tmakeanaccurateresult.
Informedsearchalgorithmsarealsocalledheuristicsearchsinceitusestheideaofheuristics.
Theheuristicfunctionisafunctionusedtomeasuretheclosenessofthecurrentstatetothegoalstateandheuristicpropertiesareusedtofindoutthebestpossiblepathtoreachthegoalstateconcerningthepathcost.
ConsideranexampleofsearchingaplaceyouwanttovisitonGooglemaps.Thecurrentlocationandthedestinationplacearegiventothesearchalgorithmforcalculatingtheaccuratedistance,timetaken,andreal-timetrafficupdatesonthatparticularroute.Thisisexecutedusinginformedsearchalgorithms.
InformedSearchAlgorithms:
Here,thealgorithmshaveinformationonthegoalstate,whichhelpsinmoreefficientsearching.Thisinformationisobtainedbysomethingcalleda
heuristic.
Inthissection,wewilldiscussthefollowingsearchalgorithms.
GreedySearch
A*TreeSearch
A*GraphSearch
SearchHeuristics:
Inaninformedsearch,aheuristicisa
function
thatestimateshowcloseastateistothegoalstate.Forexample–Manhattandistance,Euclideandistance,etc.(Lesserthedistance,closerthegoal.)Differentheuristicsareusedindifferentinformedalgorithmsdiscussedbelow.
GreedySearch:
Ingreedysearch,weexpandthenodeclosesttothegoalnode.The“closeness”isestimatedbyaheuristich(x).
Heuristic:
Aheuristichisdefinedas-
h(x)=Estimateofdistanceofnodexfromthegoalnode.
Lowerthevalueofh(x),closeristhenodefromthegoal.
Strategy:
Expandthenodeclosesttothegoalstate,
i.e.
expandthenodewithalowerhvalue.
Example:
Question.
FindthepathfromStoGusinggreedysearch.Theheuristicvalueshofeachnodebelowthenameofthenode.
Solution.
StartingfromS,wecantraversetoA(h=9)orD(h=5).WechooseD,asithasthelowerheuristiccost.NowfromD,wecanmovetoB(h=4)orE(h=3).WechooseEwithalowerheuristiccost.Finally,fromE,wegotoG(h=0).Thisentiretraversalisshowninthesearchtreebelow,inblue.
Path:
?S->D->E->G
Advantage:
Workswellwithinformedsearchproblems,withfewerstepstoreachagoal.
Disadvantage:
CanturnintounguidedDFSintheworstcase.
A*TreeSearch:
A*TreeSearch,orsimplyknownasA*Search,combinesthestrengthsofuniform-costsearchandgreedysearch.Inthissearch,theheuristicisthesummationofthecostinUCS,denotedbyg(x),andthecostinthegreedysearch,denotedbyh(x).Thesummedcostisdenotedbyf(x).
Heuristic:
ThefollowingpointsshouldbenotedwrtheuristicsinA*search.
Here,h(x)iscalledthe
forwardcost
andisanestimateofthedistanceofthecurrentnodefromthegoalnode.
And,g(x)iscalledthe
backwardcost
andisthecumulativecostofanodefromtherootnode.
A*searchisoptimalonlywhenforallnodes,theforwardcostforanodeh(x)underestimatestheactualcosth*(x)toreachthegoal.Thispropertyof
A*
heuristiciscalled
admissibility.
Admissibility:?
Strategy:
Choosethenodewiththelowestf(x)value.
Example:
Question.
FindthepathtoreachfromStoGusingA*search.
Solution.
StartingfromS,thealgorithmcomputesg(x)+h(x)forallnodesinthefringeateachstep,choosingthenod
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年雙層三籃購(gòu)物車項(xiàng)目市場(chǎng)調(diào)查研究報(bào)告
- 軟件開(kāi)發(fā)中的新興趨勢(shì)考試試題及答案
- 計(jì)算機(jī)一級(jí)wps考試高頻試題及答案
- 軟件開(kāi)發(fā)基礎(chǔ)知識(shí)題目及答案
- 計(jì)算機(jī)二級(jí)Python編程效果展示試題及答案
- 網(wǎng)絡(luò)編程基礎(chǔ)計(jì)算機(jī)二級(jí)考試試題及答案
- 2025年二級(jí)MySQL考試通關(guān)試題及答案
- 計(jì)算機(jī)一級(jí)考試秘籍試題及答案
- 記憶力提升財(cái)務(wù)成本管理試題及答案
- 明確考點(diǎn)的計(jì)算機(jī)基礎(chǔ)試題及答案
- GB/T 24675.2-2009保護(hù)性耕作機(jī)械深松機(jī)
- GB/T 224-2008鋼的脫碳層深度測(cè)定法
- GB/T 18400.4-2010加工中心檢驗(yàn)條件第4部分:線性和回轉(zhuǎn)軸線的定位精度和重復(fù)定位精度檢驗(yàn)
- 危險(xiǎn)化學(xué)品MSDS(硫酸鈉(非危化品))
- 無(wú)人機(jī)結(jié)構(gòu)與系統(tǒng)-第1章-無(wú)人機(jī)結(jié)構(gòu)與飛行原理課件
- 2023年STD溫鹽深剖面儀行業(yè)分析報(bào)告及未來(lái)五至十年行業(yè)發(fā)展報(bào)告
- 護(hù)理管理中的組織溝通課件
- 公安機(jī)關(guān)人民警察基本級(jí)執(zhí)法資格考試題庫(kù)及答案
- 泌尿系結(jié)石課件
- DB34-T 4016-2021 健康體檢機(jī)構(gòu) 建設(shè)和管理規(guī)范-高清現(xiàn)行
- 二手新能源汽車充電安全承諾書(shū)
評(píng)論
0/150
提交評(píng)論