四川省資中縣聯考2024屆中考數學對點突破模擬試卷含解析_第1頁
四川省資中縣聯考2024屆中考數學對點突破模擬試卷含解析_第2頁
四川省資中縣聯考2024屆中考數學對點突破模擬試卷含解析_第3頁
四川省資中縣聯考2024屆中考數學對點突破模擬試卷含解析_第4頁
四川省資中縣聯考2024屆中考數學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省資中縣聯考2024屆中考數學對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.2.在代數式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠03.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.4.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.125.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關系是()A.相交 B.相切 C.相離 D.不能確定6.如圖,已知點A在反比例函數y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數的表達式為()A.y= B.y= C.y= D.y=﹣7.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.8.在-,,0,-2這四個數中,最小的數是()A. B. C.0 D.-29.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個10.已知一元二次方程的兩個實數根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.12.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.13.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.14.若關于x的一元二次方程有兩個不相等的實數根,則k的取值范圍是______.15.將直線y=x+b沿y軸向下平移3個單位長度,點A(-1,2)關于y軸的對稱點落在平移后的直線上,則b的值為____.16.如圖,△ABC內接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數為_______°.三、解答題(共8題,共72分)17.(8分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.18.(8分)某校九年級數學測試后,為了解學生學習情況,隨機抽取了九年級部分學生的數學成績進行統計,得到相關的統計圖表如下.成績/分120﹣111110﹣101100﹣9190以下成績等級ABCD請根據以上信息解答下列問題:(1)這次統計共抽取了名學生的數學成績,補全頻數分布直方圖;(2)若該校九年級有1000名學生,請據此估計該校九年級此次數學成績在B等級以上(含B等級)的學生有多少人?(3)根據學習中存在的問題,通過一段時間的針對性復習與訓練,若A等級學生數可提高40%,B等級學生數可提高10%,請估計經過訓練后九年級數學成績在B等級以上(含B等級)的學生可達多少人?19.(8分)先化簡,,其中x=.20.(8分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內選取一個合適的整數作為x的值代入求值.21.(8分)先化簡,再在1,2,3中選取一個適當的數代入求值.22.(10分)為看豐富學生課余文化生活,某中學組織學生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據學生報名的統計結果,繪制了如下尚不完整的統計圖:圖1各項報名人數扇形統計圖:圖2各項報名人數條形統計圖:根據以上信息解答下列問題:(1)學生報名總人數為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統計圖補充完整;(4)學校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學中任意選取兩名同學去參加全市的書法比賽,求恰好選中甲、乙兩名同學的概率.23.(12分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.24.珠海某企業接到加工“無人船”某零件5000個的任務.在加工完500個后,改進了技術,每天加工的零件數量是原來的1.5倍,整個加工過程共用了35天完成.求技術改進后每天加工零件的數量.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ2、D【解析】

根據二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.3、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.4、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質.5、A【解析】試題分析:根據圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關系是相交.故選A.考點:直線與圓的位置關系.6、C【解析】

由雙曲線中k的幾何意義可知據此可得到|k|的值;由所給圖形可知反比例函數圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關于反比例函數的題目,需結合反比例函數中系數k的幾何意義解答;7、A【解析】分析:連接OE1,OD1,OD2,如圖,根據正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.8、D【解析】

根據正數大于0,負數小于0,正數大于一切負數,兩個負數,絕對值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個數中,﹣1<﹣<0<,故最小的數為:﹣1.故選D.【點睛】本題考查了實數的大小比較,解答本題的關鍵是熟練掌握實數的大小比較方法,特別是兩個負數的大小比較.9、C【解析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、B【解析】

根據根與系數的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.二、填空題(本大題共6個小題,每小題3分,共18分)11、2﹣【解析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據S陰影=2(S扇形BAF-S弓形AF)即可得出結論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質的應用,關鍵是根據圖形的對稱性分析,主要考查學生的計算能力.12、3﹣【解析】

首先設點B的橫坐標,由點B在拋物線y1=x2(x≥0)上,得出點B的坐標,再由平行,得出A和C的坐標,然后由CD平行于y軸,得出D的坐標,再由DE∥AC,得出E的坐標,即可得出DE和AB,進而得解.【詳解】設點B的橫坐標為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標求解,關鍵是利用平行的性質.13、﹣1【解析】

先由圖形確定:當O、G、D共線時,DG最小;根據正方形的性質證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質與全等三角形的判定與性質,解題的關鍵是熟練的掌握正方形的性質與全等三角形的判定與性質.14、k<5且k≠1.【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數根,解得:且故答案為且15、1【解析】試題分析:先根據一次函數平移規律得出直線y=x+b沿y軸向下平移3個單位長度后的直線解析式y=x+b﹣3,再把點A(﹣1,2)關于y軸的對稱點(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案為1.考點:一次函數圖象與幾何變換16、48°【解析】

如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內接四邊形的性質可求出∠AKC的度數,利用圓周角定理可求出∠AOC的度數,由切線性質可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內接四邊形的性質、周角定理及切線性質,圓內接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關知識是解題關鍵.三、解答題(共8題,共72分)17、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】

(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.18、(1)1人;補圖見解析;(2)10人;(3)610名.【解析】

(1)用總人數乘以A所占的百分比,即可得到總人數;再用總人數乘以A等級人數所占比例可得其人數,繼而根據各等級人數之和等于總人數可得D等級人數,據此可補全條形圖;

(2)用總人數乘以(A的百分比+B的百分比),即可解答;

(3)先計算出提高后A,B所占的百分比,再乘以總人數,即可解答.【詳解】解:(1)本次調查抽取的總人數為15÷=1(人),則A等級人數為1×=10(人),D等級人數為1﹣(10+15+5)=20(人),補全直方圖如下:故答案為1.(2)估計該校九年級此次數學成績在B等級以上(含B等級)的學生有1000×=10(人);(3)∵A級學生數可提高40%,B級學生數可提高10%,∴B級學生所占的百分比為:30%×(1+10%)=33%,A級學生所占的百分比為:20%×(1+40%)=28%,∴1000×(33%+28%)=610(人),∴估計經過訓練后九年級數學成績在B以上(含B級)的學生可達610名.【點睛】考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、【解析】

根據分式的化簡方法先通分再約分,然后帶入求值.【詳解】解:當時,.【點睛】此題重點考查學生對分式的化簡的應用,掌握分式的化簡方法是解題的關鍵.20、﹣,﹣.【解析】

根據分式的減法和除法可以化簡題目中的式子,然后在-2<x<中選取一個使得原分式有意義的整數值代入化簡后的式子即可求出最后答案,值得注意的是,本題答案不唯一,x的值可以取-2、2中的任意一個.【詳解】原式====,∵-2<x<(x為整數)且分式要有意義,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以選取x=2時,此時原式=-.【點睛】本題主要考查了求代數式的值,解本題的要點在于在化解過程中,求得x的取值范圍,從而再選取x=2得到答案.21、,當x=2時,原式=.【解析】試題分析:先括號內通分,然后計算除法,最后取值時注意使得分式有意義,最后代入化簡即可.試題解析:原式===當x=2時,原式=.22、(1)200;(2)54°;(3)見解析;(4)【解析】

(1)根據A的人數及所占的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論