全國市級聯考湖南省邵陽市2024屆中考數學全真模擬試題含解析_第1頁
全國市級聯考湖南省邵陽市2024屆中考數學全真模擬試題含解析_第2頁
全國市級聯考湖南省邵陽市2024屆中考數學全真模擬試題含解析_第3頁
全國市級聯考湖南省邵陽市2024屆中考數學全真模擬試題含解析_第4頁
全國市級聯考湖南省邵陽市2024屆中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

[全國市級聯考]湖南省邵陽市2024屆中考數學全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃2.如圖,一圓弧過方格的格點A、B、C,在方格中建立平面直角坐標系,使點A的坐標為(﹣3,2),則該圓弧所在圓心坐標是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)3.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:64.函數與在同一坐標系中的大致圖象是()A、B、C、D、5.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.326.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=907.如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為點E,DE=1,則BC=()A. B.2 C.3 D.+28.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.59.下列各式計算正確的是()A.a2+2a3=3a5 B.a?a2=a3 C.a6÷a2=a3 D.(a2)3=a510.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形11.下列運算正確的是()A. B.C. D.12.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數的解析式為▲.14.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.15.如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為________.16.計算的結果是______.17.如圖,直線l1∥l2∥l3,等邊△ABC的頂點B、C分別在直線l2、l3上,若邊BC與直線l3的夾角∠1=25°,則邊AB與直線l1的夾角∠2=________.18.同時擲兩粒骰子,都是六點向上的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉60°后得到CE,連接AE.求證:AE∥BC.20.(6分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數式表示第n個等式:an==(n為正整數);求a1+a2+a3+a4+…+a100的值.21.(6分)已知拋物線經過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側,當,兩點中只有一個點在圖形的內部時,請直接寫出的取值范圍.22.(8分)如圖,熱氣球探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角為30°,看這棟樓底部C處的俯角為60°,熱氣球與樓的水平距離AD為100米,試求這棟樓的高度BC.23.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數.(2)求圖中陰影部分的面積.24.(10分)某樓盤2018年2月份準備以每平方米7500元的均價對外銷售,由于國家有關房地產的新政策出臺后,購房者持幣觀望,為了加快資金周轉,房地產開發(fā)商對價格連續(xù)兩個月進行下調,4月份下調到每平方米6075元的均價開盤銷售.(1)求3、4兩月平均每月下調的百分率;(2)小穎家現在準備以每平方米6075元的開盤均價,購買一套100平方米的房子,因為她家一次性付清購房款,開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,小穎家選擇哪種方案更優(yōu)惠?(3)如果房價繼續(xù)回落,按此平均下調的百分率,請你預測到6月份該樓盤商品房成交均價是否會跌破4800元/平方米,請說明理由.25.(10分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制出如下的統(tǒng)計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數為,圖①中m的值為;(2)求本次抽測的這組數據的平均數、眾數和中位數;(3)若規(guī)定引體向上5次以上(含5次)為體能達標,根據樣本數據,估計該校350名九年級男生中有多少人體能達標.26.(12分)為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:某市自來水銷售價格表類別月用水量(立方米)供水價格(元/立方米)污水處理費(元/立方米)居民生活用水階梯一0~18(含18)1.901.00階梯二18~25(含25)2.85階梯三25以上5.70(注:居民生活用水水價=供水價格+污水處理費)(1)當居民月用水量在18立方米及以下時,水價是_____元/立方米.(2)4月份小明家用水量為20立方米,應付水費為:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)預計6月份小明家的用水量將達到30立方米,請計算小明家6月份的水費.(3)為了節(jié)省開支,小明家決定每月用水的費用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議27.(12分)如圖,二次函數的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數關系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

用最高氣溫減去最低氣溫,再根據有理數的減法運算法則“減去一個數等于加上這個數的相反數”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.2、C【解析】如圖:分別作AC與AB的垂直平分線,相交于點O,則點O即是該圓弧所在圓的圓心.∵點A的坐標為(﹣3,2),∴點O的坐標為(﹣2,﹣1).故選C.3、C【解析】

根據AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,

∴.

∴△FEC面積是△AEF面積的2倍.

設△AEF面積為x,則△AEC面積為3x,

∵E為AD中點,

∴△DEC面積=△AEC面積=3x.

∴四邊形FCDE面積為1x,

所以S△AFE:S四邊形FCDE為1:1.

故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.4、D.【解析】試題分析:根據一次函數和反比例函數的性質,分k>0和k<0兩種情況討論:當k<0時,一次函數圖象過二、四、三象限,反比例函數中,-k>0,圖象分布在一、三象限;當k>0時,一次函數過一、三、四象限,反比例函數中,-k<0,圖象分布在二、四象限.故選D.考點:一次函數和反比例函數的圖象.5、B【解析】

根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.6、A【解析】試題分析:設某種書包原價每個x元,根據題意列出方程解答即可.設某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.7、C【解析】試題分析:根據角平分線的性質可得CD=DE=1,根據Rt△ADE可得AD=2DE=2,根據題意可得△ADB為等腰三角形,則DE為AB的中垂線,則BD=AD=2,則BC=CD+BD=1+2=1.考點:角平分線的性質和中垂線的性質.8、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.9、B【解析】

根據冪的乘方,底數不變指數相乘;同底數冪相除,底數不變,指數相減;同底數冪相乘,底數不變指數相加,對各選項分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點睛】此題考查同底數冪的乘法,冪的乘方與積的乘方,解題的關鍵在于掌握運算法則.10、D【解析】

根據全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.11、D【解析】【分析】根據同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的法則逐項進行計算即可得.【詳解】A.,故A選項錯誤,不符合題意;B.,故B選項錯誤,不符合題意;C.,故C選項錯誤,不符合題意;D.,正確,符合題意,故選D.【點睛】本題考查了整式的運算,熟練掌握同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的運算法則是解題的關鍵.12、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】待定系數法,曲線上點的坐標與方程的關系,反比例函數圖象的對稱性,正方形的性質.【分析】由反比例函數的對稱性可知陰影部分的面積和正好為小正方形面積的,設小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達式,再根據點P(2a,a)在直線AB上可求出a的值,從而得出反比例函數的解析式:∵反比例函數的圖象關于原點對稱,∴陰影部分的面積和正好為小正方形的面積.設正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點O,∴直線AB的解析式為:x=2.∵點P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點P在反比例函數(k>0)的圖象上,∴k=2×3=2.∴此反比例函數的解析式為:.14、2.【解析】

先求出點A的坐標,根據點的坐標的定義得到OC=3,AC=2,再根據線段垂直平分線的性質可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.15、【解析】

作出D關于AB的對稱點D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據邊角關系即可求解.【詳解】解:如圖:作出D關于AB的對稱點D’,連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為弧BC的中點,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關鍵.16、【解析】

二次根式的加減運算,先化為最簡二次根式,再將被開方數相同的二次根式進行合并.【詳解】.【點睛】考點:二次根式的加減法.17、35【解析】試題分析:如圖:∵△ABC是等邊三角形,∴∠ABC=60°,又∵直線l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考點:1.平行線的性質;2.等邊三角形的性質.18、.【解析】

同時擲兩粒骰子,一共有6×6=36種等可能情況,都是六點向上只有一種情況,按概率公式計算即可.【詳解】解:都是六點向上的概率是.【點睛】本題考查了概率公式的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解析】試題分析:根據等邊三角形的性質得出AC=BC,∠B=∠ACB=60°,根據旋轉的性質得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根據SAS推出△BCD≌△ACE,根據全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根據平行線的判定得出即可.試題解析:∵△ABC是等邊三角形,∴AC=BC,∠B=∠ACB=60°,∵線段CD繞點C順時針旋轉60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD與△ACE中,,

∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.20、(1)(2)(3)【解析】

(1)(2)觀察知,找等號后面的式子規(guī)律是關鍵:分子不變,為1;分母是兩個連續(xù)奇數的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規(guī)律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.21、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】

(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)當點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.【點睛】本題主要考查了二次函數與幾何圖形的綜合應用,掌握相關幾何圖形的性質和二次函數的性質是解題的關鍵.22、這棟樓的高度BC是米.【解析】試題分析:在直角三角形ADB中和直角三角形ACD中,根據銳角三角函數中的正切可以分別求得BD和CD的長,從而可以求得BC的長.試題解析:解:∵°,°,°,AD=100,∴在Rt中,,在Rt中,.∴.點睛:本題考查解直角三角形的應用-仰角俯角問題,解答此類問題的關鍵是明確已知邊、已知角和未知邊之間的三角函數關系.23、(1)∠A=30°;(2)【解析】

(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質,解題的關鍵是熟練的掌握扇形面積的計算及切線的性質.24、(1)10%;(2)方案一更優(yōu)惠,小穎選擇方案一:打9.8折購買;(3)不會跌破4800元/平方米,理由見解析【解析】

(1)設3、4兩月平均每月下調的百分率為x,根據下降率公式列方程解方程求出答案;(2)分別計算出方案一與方案二的費用相比較即可;(3)根據(1)的答案計算出6月份的價格即可得到答案.【詳解】(1)設3、4兩月平均每月下調的百分率為x,由題意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4兩月平均每月下調的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更優(yōu)惠,小穎選擇方案一:打9.8折購買;(3)不會跌破4800元/平方米因為由(1)知:平均每月下調的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份該樓盤商品房成交均價不會跌破4800元/平方米.【點睛】此題考查一元二次方程的實際應用,方案比較計算,正確理解題意并列出方程解答問題是解題的關鍵.25、(1)50、1;(2)平均數為5.16次,眾數為5次,中位數為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據4次的人數及其百分比可得總人數,用6次的人數除以總人數求得m即可;(Ⅱ)根據平均數、眾數、中位數的定義求解可得;(Ⅲ)總人數乘以樣本中5、6、7次人數之和占被調查人數的比例可得.詳解:(Ⅰ)本次抽測的男生人數為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數為=5.16次,眾數為5次,中位數為=5次;(Ⅲ)×350=2.答:估計該校350名九年級男生中有2人體能達標.點睛:本題考查了條形統(tǒng)計圖,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據.26、(1)1.90;(2)112.65元;(3)當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.【解析】試題分析:(1)由表中數據可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可知小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知條件可知,用水量為18立方米時,應交水費52.2元,當用水量為25立方米時,應交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不會超過25立方米,設他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超過24立方米.試題解析:(1)由表中數據可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可得:小明家6月份的水費是:(1.9+1)×18+(2.85+1)×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論