




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年內蒙古巴彥淖爾市臨河區中考數學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.函數y=中自變量x的取值范圍是()A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<12.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x43.某班選舉班干部,全班有1名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,1.老師規定:同意某同學當選的記“1”,不同意(含棄權)的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是()A.同意第1號或者第2號同學當選的人數B.同時同意第1號和第2號同學當選的人數C.不同意第1號或者第2號同學當選的人數D.不同意第1號和第2號同學當選的人數4.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.5.如圖所示,點E是正方形ABCD內一點,把△BEC繞點C旋轉至△DFC位置,則∠EFC的度數是()A.90° B.30° C.45° D.60°6.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.57.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.8.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確9.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.10.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是(
)A. B. C. D.11.關于x的方程12x=kA.0或1212.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A(m,2),B(5,n)在函數(k>0,x>0)的圖象上,將該函數圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′.圖中陰影部分的面積為8,則k的值為.14.計算的結果等于__________.15.下表記錄了甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數與方差s2:甲乙丙丁平均數(cm)561560561560方差s2(cm2)3.53.515.516.5根據表中數據,要從中選擇一名成績好又發揮穩定的運動員參加比賽,應該選擇_____.16.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發現有60次摸到黑球,請你估計這個袋中紅球約有_____個.17.數學綜合實踐課,老師要求同學們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.18.如圖,在圓O中,AB為直徑,AD為弦,過點B的切線與AD的延長線交于點C,AD=DC,則∠C=________度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數,并將得到的數據繪制成了下面兩幅不完整的統計圖.請根據圖中提供的信息,回答下列問題:扇形統計圖中a的值為%,該扇形圓心角的度數為;補全條形統計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?20.(6分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統計圖.根據統計圖的信息解決下列問題:本次調查的學生有多少人?補全上面的條形統計圖;扇形統計圖中C對應的中心角度數是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?21.(6分)計算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.22.(8分)先化簡,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根23.(8分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數字1和1.B布袋中有三個完全相同的小球,分別標有數字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標有的數字為x,再從B布袋中隨機取出一個小球,記錄其標有的數字為y,這樣就確定點Q的一個坐標為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;(1)求點Q落在直線y=﹣x﹣1上的概率.24.(10分)定義:如果把一條拋物線繞它的頂點旋轉180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標;若不存在,說明理由.25.(10分)如圖1,在正方形ABCD中,E是邊BC的中點,F是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.26.(12分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=227.(12分)某校對學生就“食品安全知識”進行了抽樣調查(每人選填一類),繪制了如圖所示的兩幅統計圖(不完整)。請根據圖中信息,解答下列問題:(1)根據圖中數據,求出扇形統計圖中的值,并補全條形統計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:根據分式的分母不為0;偶次根式被開方數大于或等于0;當一個式子中同時出現這兩點時,應該是取讓兩個條件都滿足的公共部分.詳解:根據題意得到:,解得x≥-1且x≠1,故選A.點睛:本題考查了函數自變量的取值范圍問題,判斷一個式子是否有意義,應考慮分母上若有字母,字母的取值不能使分母為零,二次根號下字母的取值應使被開方數為非負數.易錯易混點:學生易對二次根式的非負性和分母不等于0混淆.2、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.3、B【解析】
先寫出同意第1號同學當選的同學,再寫出同意第2號同學當選的同學,那么同時同意1,2號同學當選的人數是他們對應相乘再相加.【詳解】第1,2,3,……,1名同學是否同意第1號同學當選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學當選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是同時同意第1號和第2號同學當選的人數,故選B.【點睛】本題考查了推理應用題,題目比較新穎,是基礎題.4、C【解析】
連接OD,根據勾股定理求出CD,根據直角三角形的性質求出∠AOD,根據扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.5、C【解析】
根據正方形的每一個角都是直角可得∠BCD=90°,再根據旋轉的性質求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據等腰直角三角形的性質解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉的性質問題——每對對應點到旋轉中心的連線的夾角都等于旋轉角度,每對對應邊相等,故為等腰直角三角形.6、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D7、D【解析】試題分析:根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.8、D【解析】
直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關鍵.9、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質得到PO=PB,再根據兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以當H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數的綜合運用,熟練掌握二次函數的性質和最短途徑的解決方法是解題的關鍵.10、D【解析】
根據銳角三角函數的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點睛】熟悉掌握銳角三角函數的定義是關鍵.11、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.12、B【解析】
根據三角形的中位線等于第三邊的一半進行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【點睛】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.【解析】試題分析:∵將該函數圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應點分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點:2.反比例函數系數k的幾何意義;2.平移的性質;3.綜合題.14、【解析】
根據完全平方公式進行展開,然后再進行同類項合并即可.【詳解】解:.故填.【點睛】主要考查的是完全平方公式及二次根式的混合運算,注意最終結果要化成最簡二次根式的形式.15、甲【解析】
首先比較平均數,平均數相同時選擇方差較小的運動員參加.【詳解】∵,∴從甲和丙中選擇一人參加比賽,∵,∴選擇甲參賽,故答案為甲.【點睛】此題考查了平均數和方差,關鍵是根據方差反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.16、1【解析】
估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據概率公式計算這個口袋中黑球的數量,繼而得出答案.【詳解】因為共摸了200次球,發現有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.17、【解析】
根據題意作圖,可得AB=6cm,設正方體的棱長為xcm,則AC=x,BC=3x,根據勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據題意可得AB=6cm,
設正方體的棱長為xcm,則AC=x,BC=3x,
根據勾股定理,AB2=AC2+BC2,即,
解得故答案為:.【點睛】本題考查了勾股定理的應用,正確理解題意是解題的關鍵.18、1【解析】
利用圓周角定理得到∠ADB=90°,再根據切線的性質得∠ABC=90°,然后根據等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數.【詳解】解:∵AB為直徑,∴∠ADB=90°,∵BC為切線,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC為等腰直角三角形,∴∠C=1°.故答案為1.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了等腰直角三角形的判定與性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)25,90°;(2)見解析;(3)該市“活動時間不少于5天”的大約有1.【解析】試題分析:(1)根據扇形統計圖的特征即可求得的值,再乘以360°即得扇形的圓心角;(2)先算出總人數,再乘以“活動時間為6天”對應的百分比即得對應的人數;(3)先求得“活動時間不少于5天”的學生人數的百分比,再乘以20000即可.(1)由圖可得該扇形圓心角的度數為90°;(2)“活動時間為6天”的人數,如圖所示:(3)∵“活動時間不少于5天”的學生人數占75%,20000×75%=1∴該市“活動時間不少于5天”的大約有1人.考點:統計的應用點評:統計的應用初中數學的重點,在中考中極為常見,一般難度不大.20、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】
(1)根據喜好A口味的牛奶的學生人數和所占百分比,即可求出本次調查的學生數.(2)用調查總人數減去A、B、D三種喜好不同口味牛奶的人數,求出喜好C口味牛奶的人數,補全統計圖.再用360°乘以喜好C口味的牛奶人數所占百分比求出對應中心角度數.(3)用總人數乘以A、B口味牛奶喜歡人數所占的百分比得出答案.【詳解】解:(1)本次調查的學生有30÷20%=150人;(2)C類別人數為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統計圖中C對應的中心角度數是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得出必要的信息是解題的關鍵.21、2【解析】
先根據0次冪的意義、絕對值的意義、二次根式的除法、負整數指數冪的意義化簡,然后進一步計算即可.【詳解】解:原式=2+2﹣+2=2﹣2+2=2.【點睛】本題考查了0次冪的意義、絕對值的意義、二次根式的除法、負整數指數冪的意義,熟練掌握各知識點是解答本題的關鍵.22、2m2+2m+5;1;【解析】
先利用完全平方公式化簡,再去括號合并得到最簡結果,把已知等式變形后代入值計算即可.【詳解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【點睛】此題考查了整式的化簡求值以及方程的解,利用整體代換思想可使運算更簡單.23、(1)見解析;(1)【解析】試題分析:先用列表法寫出點Q的所有可能坐標,再根據概率公式求解即可.(1)由題意得
1
1
-1
(1,-1)
(1,-1)
-1
(1,-1)
(1,-1)
-2
(1,-2)
(1,-2)
(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=?x?1上)=.考點:概率公式點評:解題的關鍵是熟練掌握概率公式:概率=所求情況數與總情況數的比值.24、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】
(1)當拋物線繞其頂點旋轉180°后,拋物線的頂點坐標不變,只是開口方向相反,則可根據頂點式寫出旋轉后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標C、C′,由點的坐標可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當AC為對角線時,由中點坐標可知點P不存在,當AC為邊時,分兩種情況可求得點P的坐標.【詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉180°后拋物線的頂點坐標不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標為(1,c-1),與y軸的交點C的坐標為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標為1,∴∠CDC'=90°,由對稱性質可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標為(,?),設P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側,則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標為3,把x=3代入“孿生拋物線”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側,則AQ∥CP且AQ=CP,∴點P的橫坐標為-3,把x=-3代入“孿生拋物線”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【點睛】本題是二次函數綜合題型,主此題主要考查了根據二次函數的圖象的變換求拋物線的解析式,解題的關鍵是求出旋轉后拋物線的頂點坐標以及確定出點P的位置,注意分情況討論.25、(1)見解析;(2)①;②cos∠AFE=【解析】
(1)用特殊值法,設,則,證,可求出CF,DF的長,即可求出結論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設CF=2,則CE=6,可設AT=x,則TF=3x,,,分別用含x的代數式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結論.【詳解】(1)設BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版暗股投資與項目進度管理合同
- 二零二五年度商鋪租賃合同-含法律風險防范條款
- 2025版茶樓裝修工程質量驗收合同模板下載
- 生物電信號影響-洞察及研究
- 2025版白酒二批經銷商全渠道銷售與客戶關系管理合同
- 二零二五年度網紅餐飲品牌會員積分掛賬管理系統合同
- 2025版化工產品加工保密合同范本
- 二零二五年度綠色包裝材料供應商合作協議
- 2025版化工原料采購合同模板
- 二零二五國樽律所跨國勞務派遣合同起草
- 北京安全生產治本攻堅三年行動方案
- 建設單位全員安全生產責任清單
- 項目計劃管理培訓
- 2026屆高三語文一輪復習教學計劃
- 給非財務人員的財務培訓
- 品質培訓課件模板
- 2025至2030中國GPU芯片行業市場發展現狀調研及競爭格局與產業運行態勢及投資規劃深度研究報告
- 佛教寺院各項管理制度
- 供水公司維修管理制度
- 寧城職教中心實習實訓基地項目可行性論證報告
- 海底撈服務管理制度
評論
0/150
提交評論