




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省溧水縣重點名校中考數學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若一個凸多邊形的內角和為720°,則這個多邊形的邊數為A.4 B.5 C.6 D.72.點P(1,﹣2)關于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)3.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有()A.2個 B.3個 C.4個 D.5個4.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數是()A.75° B.65° C.60° D.50°5.下面的幾何體中,主視圖為圓的是()A. B. C. D.6.若一組數據2,3,,5,7的眾數為7,則這組數據的中位數為()A.2 B.3 C.5 D.77.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.8.綠豆在相同條件下的發芽試驗,結果如下表所示:每批粒數n100300400600100020003000發芽的粒數m9628238257094819042850發芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當n=400時,綠豆發芽的頻率為0.955,所以綠豆發芽的概率是0.955;②根據上表,估計綠豆發芽的概率是0.95;③若n為4000,估計綠豆發芽的粒數大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③9.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(10.在,,,這四個數中,比小的數有()個.A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.12.如圖,Rt△ABC中,∠ACB=90°,D為AB的中點,F為CD上一點,且CF=CD,過點B作BE∥DC交AF的延長線于點E,BE=12,則AB的長為_____.13.一等腰三角形,底邊長是18厘米,底邊上的高是18厘米,現在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時停止,則這個矩形是第_____個.14.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.15.在一個不透明的布袋中裝有4個白球和n個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=_____.16.如圖,在平面直角坐標系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉30°得到線段PC,連接BC.若點A的坐標為(﹣1,0),則線段BC的長為_____.三、解答題(共8題,共72分)17.(8分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.18.(8分)當x取哪些整數值時,不等式與4﹣7x<﹣3都成立?19.(8分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率20.(8分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(8分)如圖,一次函數y=﹣12x+52的圖象與反比例函數y=(1)求反比例函數的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.22.(10分)先化簡,再求值:,且x為滿足﹣3<x<2的整數.23.(12分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.24.若關于的方程無解,求的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
設這個多邊形的邊數為n,根據多邊形的內角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設這個多邊形的邊數為n,由多邊形的內角和是720°,根據多邊形的內角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內角和定理,熟練掌握多邊形的內角和定理是解答本題的關鍵.2、C【解析】關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,由此可得P(1,﹣2)關于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【點睛】本題考查了關于坐標軸對稱的點的坐標,正確地記住關于坐標軸對稱的點的坐標特征是關鍵.關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數;關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數.3、B【解析】
①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當x=﹣1時,y=a﹣b+c由此可判定②;③由對稱知,當x=2時,函數值大于0,即y=4a+2b+c>0,由此可判定③;④當x=3時函數值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當x=1時,y的值最大.此時,y=a+b+c,當x=n時,y=an2+bn+c,由此即可判定⑤.【詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項錯誤;②當x=﹣1時,y=a﹣b+c<0,即b>a+c,故此選項錯誤;③由對稱知,當x=2時,函數值大于0,即y=4a+2b+c>0,故此選項正確;④當x=3時函數值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項正確;⑤當x=1時,y的值最大.此時,y=a+b+c,而當x=n時,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項正確.∴③④⑤正確.故選B.【點睛】本題主要考查了拋物線的圖象與二次函數系數之間的關系,熟知拋物線的圖象與二次函數系數之間的關系是解決本題的關鍵.4、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數,又因為∠B=∠C,所以∠C的度數可求出.解:∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所對的圓周角相等).
故選B.
5、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.6、C【解析】試題解析:∵這組數據的眾數為7,∴x=7,則這組數據按照從小到大的順序排列為:2,3,1,7,7,中位數為:1.故選C.考點:眾數;中位數.7、C【解析】
混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應的等量關系是解決本題的關鍵.8、D【解析】
①利用頻率估計概率,大量反復試驗下頻率穩定值即概率,n=400,數值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復試驗下頻率穩定值即概率,可得②正確;③用4000乘以綠豆發芽的的概率即可求得綠豆發芽的粒數,③正確.【詳解】①當n=400時,綠豆發芽的頻率為0.955,所以綠豆發芽的概率大約是0.955,此推斷錯誤;②根據上表當每批粒數足夠大時,頻率逐漸接近于0.950,所以估計綠豆發芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發芽的粒數大約為4000×0.950=3800粒,此結論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.9、C【解析】利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規律是解題關鍵.10、B【解析】
比較這些負數的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數中,比﹣2小的數是是﹣4和﹣.故選B.【點睛】本題主要考查負數大小的比較,解題的關鍵時負數比較大小時,絕對值大的數反而小.二、填空題(本大題共6個小題,每小題3分,共18分)11、(4,6),(8﹣27,6),(27,6).【解析】
分別取三個點作為定點,然后根據勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標.【詳解】解:當M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標為(4,6),當B為頂點時,AB長為腰=8,M在靠近D處,根據勾股定理可知ME=82-所以M的坐標為(8﹣27,6);當A為頂點時,AB長為腰=8,M在靠近C處,根據勾股定理可知MF=82-所以M的坐標為(27,6);綜上所述,M的坐標為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點睛】本題主要考查矩形的性質、坐標與圖形性質,解題關鍵是根據對等腰三角形性質的掌握和勾股定理的應用.12、1.【解析】
根據三角形的性質求解即可。【詳解】解:在Rt△ABC中,D為AB的中點,根據直角三角形斜邊的中線等于斜邊的一半可得:AD=BD=CD,因為D為AB的中點,BE//DC,所以DF是△ABE的中位線,BE=2DF=12所以DF==6,設CD=x,由CF=CD,則DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【點睛】本題主要考查三角形基本概念,綜合運用三角形的知識可得答案。13、5【解析】
根據相似三角形的相似比求得頂點到這個正方形的長,再根據矩形的寬求得是第幾張.【詳解】解:已知剪得的紙條中有一張是正方形,則正方形中平行于底邊的邊是3,所以根據相似三角形的性質可設從頂點到這個正方形的線段為x,則318=x所以另一段長為18-3=15,因為15÷3=5,所以是第5張.故答案為:5.【點睛】本題主要考查了相相似三角形的判定和性質,關鍵是根據似三角形的性質及等腰三角形的性質的綜合運用解答.14、1【解析】
利用對稱性可設出E、F的兩點坐標,表示出△DEF的面積,可求出k的值.【詳解】解:設AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【點睛】本題主要考查反比例函數與正方形和三角形面積的運用,表示出E和F的坐標是關鍵.15、1【解析】
根據白球的概率公式=列出方程求解即可.【詳解】不透明的布袋中的球除顏色不同外,其余均相同,共有n+4個球,其中白球4個,根據古典型概率公式知:P(白球)==.解得:n=1,故答案為1.【點睛】此題主要考查了概率公式的應用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、22【解析】
只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點睛】本題考查翻折變換、坐標與圖形的變化、等腰直角三角形的判定和性質等知識,解題的關鍵是證明△PBC是等腰直角三角形.三、解答題(共8題,共72分)17、為;點Q的坐標為或.【解析】
依據拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求二次函數的解析式、二次函數的平移規律、線段垂直平分線的性質,發現點Q與點P關于x軸對稱,從而得到點Q的縱坐標是解題的關鍵.18、2,1【解析】
根據題意得出不等式組,解不等式組求得其解集即可.【詳解】根據題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數值是2,1.【點睛】本題考查了解不等式組的能力,根據題意得出不等式組是解題的關鍵.19、(1);(2).【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有6種等可能的結果數,再找出乙摸到白球的結果數,然后根據概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;
故答案為:;
(2)畫樹狀圖為:
共有6種等可能的結果數,其中乙摸到白球的結果數為2,
所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.20、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.21、(1)y=2x(2)(0,【解析】
(1)根據反比例函數比例系數k的幾何意義得出12【詳解】(1)∵反比例函數y==kx∴12∵k>0,∴k=2,故反比例函數的解析式為:y=2x(2)作點A關于y軸的對稱點A′,連接A′B,交y軸于點P,則PA+PB最小.由y=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1設直線A′
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備采購與運輸服務合同協議說明
- 農村特色農產品銷售與推廣協議書
- 跨境電商產業場拓展合作協議書
- 電子產品廠商與區域經銷商聯合營銷合作協議
- 2025年工廠生產承包合同范本
- 護理領域的職業發展與前景展望
- 2025勞動法 合同終止與解除規定
- 2025房產中介購房合同
- 2025化工企業合同管理規范
- 2025常規商品采購合同框架
- 珍惜時間三分鐘演講稿小學生(23篇)
- 擔保行業現狀分析
- 商品鏡頭腳本方案
- CJJ129-2009 城市快速路設計規程
- 2022-2023學年安徽省馬鞍山市八年級下期末數學試卷附答案解析
- 婦女節慰問單親媽媽方案
- 木材家具研究報告-中國木材家具產業園區發展規劃及招商引資咨詢報告2024年
- 醫療器械專業知識培訓
- 起重培訓課件
- 診所消防安全培訓課件
- 消防大隊法律培訓課件模板
評論
0/150
提交評論