2023年河南省三門峽市中考數(shù)學(xué)二模試卷(含解析)_第1頁
2023年河南省三門峽市中考數(shù)學(xué)二模試卷(含解析)_第2頁
2023年河南省三門峽市中考數(shù)學(xué)二模試卷(含解析)_第3頁
2023年河南省三門峽市中考數(shù)學(xué)二模試卷(含解析)_第4頁
2023年河南省三門峽市中考數(shù)學(xué)二模試卷(含解析)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年河南省三門峽市中考數(shù)學(xué)二模試卷

一、選擇題(本大題共10小題,共30.0分。在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))

1.一I的絕對(duì)值是()

A.-∣B.~lC.ID.I

2.2023年春節(jié)全國旅游迎來大爆發(fā).春節(jié)期間三門峽市共接待游客168.88萬人次,實(shí)現(xiàn)旅游

綜合收入2.93億元,同比增長(zhǎng)56.15%.其中“2.93億”用科學(xué)記數(shù)法可表示為()

A.0.293×IO9B.2.93XIO8C.2.93XIO9D.29.3XIO7

3.如圖是幾個(gè)相同的小立方塊所搭的幾何體的俯視圖,小正方形中的數(shù)Γ∏

字表示該位置上小立方塊的個(gè)數(shù),則這個(gè)幾何體的主視圖是()22

AM3212

B.

C.

D.----------

4.將一副三角尺按如圖所示的位置擺放在直尺上,則Nl的度數(shù)為N

()

A.45°?4

B.65°r

C.75°

D.4

5.下列運(yùn)算正確的是()

A.302+4α3=705B.(2α)3=2a3C.a6÷a2=α3D.2a2?3a=6a3

6.如圖,。為正方形ABCD對(duì)角線AC的中點(diǎn),AACE為等邊三角E

形,若ZB=2,則OE的長(zhǎng)度為()A

A.V-6

B.2√-6

C.4。

D.

7.關(guān)于%的一元二次方程以2—2*+3=0有兩個(gè)不相等的實(shí)數(shù)根,則k的值不可能是()

A.—2B.—1C.0D.1

8.為慶祝神舟十四號(hào)發(fā)射成功,學(xué)校開展航天知識(shí)競(jìng)賽活動(dòng).經(jīng)過幾輪篩選,本班決定從

甲、乙、丙、丁四名同學(xué)中選擇一名同學(xué)代表班級(jí)參加比賽,經(jīng)過統(tǒng)計(jì),四名同學(xué)成績(jī)的平

均數(shù)(單位:分)及方差(單位:分2)如表所示:

甲乙丙T

平均數(shù)96989598

方差20.40.41.6

如果要選一名成績(jī)好且狀態(tài)穩(wěn)定的同學(xué)參賽,那么應(yīng)該選擇()

A.甲B.乙C.丙D.T

9.如圖,菱形ZBCo的四個(gè)頂點(diǎn)均在坐標(biāo)軸上,已知點(diǎn)

4(—3,0),5(0,-4),E(6,0),點(diǎn)P是菱形ABCD邊上的一個(gè)動(dòng)

點(diǎn),連接PE,把PE繞著點(diǎn)E順時(shí)針旋轉(zhuǎn)90。得到EF,連接PF.若

點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度沿4TDTCTBTA方

向運(yùn)動(dòng),則第2023秒時(shí),點(diǎn)F的坐標(biāo)為()

A.(-1,6)B.(-2,6)C.(2,6)D.(10,-6)

10.在顯示汽車油箱內(nèi)油量的裝置模擬示意圖中,電壓U一定時(shí),油箱中浮子隨油面下降而

落下,帶動(dòng)滑桿使滑動(dòng)變阻器滑片向上移動(dòng),從而改變電路中的電流,電流表的示數(shù)對(duì)應(yīng)油

量體積,把電流表刻度改為相應(yīng)油量體積數(shù),山此知道油箱里剩余油量.在不考慮其他因素

的條件下,油箱中油的體積U與電路中總電阻R點(diǎn)(R息=R+Ro)是反比例關(guān)系,電流/與R總也

是反比例關(guān)系,貝∣J∕與了的函數(shù)關(guān)系是()

6

=

£O量

4表

------I

A.反比例函數(shù)B.正比例函數(shù)C.二次函數(shù)D.以上答案都不對(duì)

二、填空題(本大題共5小題,共15.0分)

11.請(qǐng)寫出一個(gè)無理數(shù),使這個(gè)無理數(shù)的絕對(duì)值小于3:.

12.不等式組∣3χ+ι≥2%_1的解集是.

13.同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,一枚硬幣正面向上,一枚硬幣反面向上的概率是

14.如圖,在扇形AOB中,4408=120。,。4=2,點(diǎn)F是卷中A

點(diǎn)、,點(diǎn)D,E分別為線段OB,AB上的點(diǎn),連接DE,EF,當(dāng)EF+ED

的值最小時(shí),圖中陰影部分的面積為.

15.如圖,RtAABCwRt4DEF,NC=NF=90。,AC=2,BC=4,點(diǎn)。為4B的中點(diǎn),點(diǎn)

E在4B的延長(zhǎng)線上,將^CEF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)α度(O<α<180)得到△DE'F,當(dāng)4BDE'是

直角三角形時(shí),AE'的長(zhǎng)為

三、解答題(本大題共8小題,共75.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

16.(本小題10.0分)

(1)計(jì)算:

(2)先化簡(jiǎn),再求值:(1+》+寧,其中%的值從一1,0,1,2中任意選取.

17.(本小題9.0分)

人口問題是‘‘國之大者”,以習(xí)近平同志為核心的黨中央高度重視人口問題.準(zhǔn)確把握人口形

勢(shì),有利于推動(dòng)社會(huì)持續(xù)健康發(fā)展.某綜合與實(shí)踐研究小組根據(jù)我國第七次人口普查數(shù)據(jù)進(jìn)行

整理、描述和分析,給出部分?jǐn)?shù)據(jù)信息.信息一:普查登記的全國大陸31個(gè)省、自治區(qū)、直轄

市人口數(shù)的頻數(shù)分布直方圖如下:(數(shù)據(jù)分成6組:0≤x<20,20≤x<40,40≤x<60,

60≤X<80,80≤X<100,100≤x≤120)

信息二:普查登記的全國大陸31個(gè)省、自治區(qū)、直轄市人口數(shù)(百萬人)在40≤x<60這一組

的數(shù)據(jù)是:58,47,45,40,43,42,50;

信息三:2010—2021年全國大陸人口數(shù)及自然增長(zhǎng)率:

II全國大陸人口

―,一自然增長(zhǎng)率

201020112012201320142015201620172018201920202021年份

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)普查登記的全國大陸31個(gè)省、自治區(qū)、直轄市人口數(shù)的中位數(shù)為百萬人;

(2)下列結(jié)論正確的是.(只填序號(hào))

①全國大陸31個(gè)省、自治區(qū)、直轄市中人口數(shù)大于等于IOO(百萬人)的有2個(gè)地區(qū);

②相對(duì)于2020年,2021年全國大陸人口自然增長(zhǎng)率降低,全國大陸人口增長(zhǎng)緩慢;

@2010-2021年全國大陸人口自然增長(zhǎng)率持續(xù)降低.

(3)2016-2021年,我國人口自然增長(zhǎng)率持續(xù)下降長(zhǎng)此以往,未來我國可能會(huì)出現(xiàn)人口老齡

化和勞動(dòng)力不足的雙重壓力.為此,從國家政策引導(dǎo)的角度出發(fā),你有什么好的建議?(提出

一條即可)

18.(本小題9.0分)

如圖,一次函數(shù)y=αx+b的圖象與反比例函數(shù)y=g的圖象交于4(一1,一3),B(3,n)兩點(diǎn).

(1)求這兩個(gè)函數(shù)的解析式;

(2)點(diǎn)C(O,τn)為y軸上一個(gè)動(dòng)點(diǎn),請(qǐng)你利用尺規(guī)作圖,過圖中所標(biāo)的C點(diǎn)作垂直于y軸的直線,

分別交反比例函數(shù)及一次函數(shù)的圖象于D,E兩點(diǎn),當(dāng)點(diǎn)E位于點(diǎn)D右方時(shí),請(qǐng)直接寫出m的

取值范圍.

19.(本小題9.0分)

三門峽黃河公鐵兩用大橋位于山西省運(yùn)城市平陸縣與河南省三門峽市陜州區(qū)之間,鏈接黃河

南北兩岸,是蒙華鐵路全線控制性工程.三門峽黃河公鐵兩用大橋建設(shè)將進(jìn)一步提升山西省與

河南省乃至中原地區(qū)的交通運(yùn)輸服務(wù)能力和水平,對(duì)促進(jìn)兩省及周邊地區(qū)的經(jīng)濟(jì)發(fā)展有重要

意義,五一期間,小明所在的綜合實(shí)踐研究小組開展了對(duì)三門峽黃河公鐵兩用大橋水面上門

式空心墩墩柱高度的測(cè)量活動(dòng),設(shè)計(jì)了如下測(cè)量方案:

課題:測(cè)量三門峽黃河公鐵兩用大橋水面上門式空心墩墩柱的高度

結(jié)果精確到0.1米).

20.(本小題9.0分)

直播帶貨已經(jīng)成為年輕人的購物時(shí)尚.為回饋粉絲,直播帶貨達(dá)人大楊哥推出促銷措施,在直

播間購買皮衣和毛衣,均可到線上客服處領(lǐng)取10%的補(bǔ)貼.粉絲麗麗在直播間購買了一件皮衣

和一件毛衣,共花去3000元,已知皮衣單價(jià)比毛衣單價(jià)的5倍還多600元.

(1)麗麗所買皮衣與毛衣的單價(jià)各是多少元?麗麗可以到線上客服處領(lǐng)取多少元補(bǔ)貼?

(2)大楊哥當(dāng)日一共賣出了皮衣和毛衣共300件,為使當(dāng)日線上客服處領(lǐng)取的補(bǔ)貼不超過

50000元,那么至少要賣出毛衣多少件?

21.(本小題9.0分)

閱讀與思考

請(qǐng)閱讀下列材料,并按要求完成相應(yīng)的任務(wù).

彌勒是德國著名數(shù)學(xué)家,他在1471年提出了著名的彌勒定理:

如圖1,已知a,B是NMoN的邊ON上的定點(diǎn),當(dāng)且僅當(dāng)AABC的外接圓與OM相切(OP與OM

相切于點(diǎn)C)時(shí)乙4CB最大,此時(shí)OC=OA-0B.

小明思考后給出如下證明:

證明:如圖2,在OM上任取一點(diǎn)C',連接4C',BC',BC'與OP相交于點(diǎn)D,連接4D.

???點(diǎn)C,。在OP上,

.?.?ACB=Z√1CB(依據(jù)①),

又,:44DB是△ACD的一個(gè)外角,

.?.?ADB>?AC'B,

.?.?ACB>Z-ACB,

即當(dāng)且僅當(dāng)AABC的外接圓與OM相切(。P與。M相切于點(diǎn)C)時(shí)4ACB最大.

如圖3,過切點(diǎn)C作C)P的直徑CQ,連接BQ,則XCBQ=90。,CQ10M,

乙Q+乙BCQ=90o,Z.BCQ+乙OCB=90°

二乙Q=乙OCB,(依據(jù)②)

又?.?NQ=?0AC,

.?.OC2=OA-0B.

任務(wù):

(1)寫出小明證明過程中的依據(jù):

依據(jù)①:,依據(jù)②:;

(2)請(qǐng)你將小明的證明過程補(bǔ)充完整;

(3)結(jié)論應(yīng)用:如圖4,已知點(diǎn)力,B的坐標(biāo)分別是(0,1)和(0,4),C是X軸正半軸上一個(gè)動(dòng)點(diǎn),

當(dāng)NACB最大時(shí),點(diǎn)C的坐為.

22.(本小題10.0分)

在平面直角坐標(biāo)系Xoy中,有一拋物線的表達(dá)式為y=-X2+2nx-n2.

(1)當(dāng)該拋物線過原點(diǎn)時(shí),求n的值;

(2)坐標(biāo)系內(nèi)有一矩形04BC,其中4(4,0),8(4,—3).

①直接寫出C點(diǎn)坐標(biāo);

②如果拋物線y=-%2+2nx-M與該矩形的邊有2個(gè)交點(diǎn),求n的取值范圍.

23.(本小題10.0分)

綜合與實(shí)踐

【經(jīng)典再現(xiàn)】

人教版八年級(jí)數(shù)學(xué)下冊(cè)教科書69頁14題:如圖1,四邊形4BCD是正方形,點(diǎn)E是邊BC的中點(diǎn),

且E尸交正方形外角的平分線C尸于點(diǎn)F.求證4E=ER(提示:取AB的中點(diǎn)“,連接HE.)

(1)請(qǐng)你思考題中的“提示”,這樣添加輔助線的目的是為了構(gòu)造出______三,進(jìn)而

得到AE=EF.

【類比探究】

(2)如圖2,四邊形ABCC是矩形,且整=n,點(diǎn)E是邊BC的中點(diǎn),?AEF=90°,且EF交矩形

外角的平分線CF于點(diǎn)凡求售的值(用含n的式子表示);

Lr

【綜合應(yīng)用】

(3)如圖3,P為邊CD上一點(diǎn),連接4P,PF,在(2)的基礎(chǔ)上,當(dāng)n=|,^PAE=45o,PF=y∏>

時(shí),請(qǐng)直接寫出BC的長(zhǎng).

答案和解析

1.【答案】c

【解析】解:—I的絕對(duì)值是∣-∣∣=杳

故選:C.

根據(jù)負(fù)數(shù)的絕對(duì)值等于它的相反數(shù)進(jìn)行計(jì)算;

本題考查了絕對(duì)值的定義.注意一個(gè)正數(shù)的絕對(duì)值是它本身,O的算術(shù)平方根是0;負(fù)數(shù)的絕對(duì)值

等于它的相反數(shù).

2.【答案】B

【解析】解:2.93億=2930000000=2.93X108:

故選:B.

科學(xué)記數(shù)法的表示形式為αX10"的形式,其中l(wèi)≤∣α∣<10,H為整數(shù),確定n的值時(shí),要看把原

數(shù)變成ɑ時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同,當(dāng)原數(shù)絕對(duì)值N10時(shí),

n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).

此題考查了科學(xué)記數(shù)法的表示方法,解題的關(guān)鍵要記住科學(xué)記數(shù)法的表示形式,正確確定ɑ的值以

及n的值.

3.【答案】B

【解析】解:從上面看,最左面一列能看到3個(gè)小立方塊,中間一列能看到2個(gè)小立方塊,靠右面

一列能看到2個(gè)小立方塊,最右面一列能看到2個(gè)小立方塊.

即主視圖為:

故選:B.

由已知條件可知,主視圖有4列,每列小立方塊數(shù)目分別為3,2,2,2,從而可以確定答案.

本題考查幾何體的三視圖,掌握主視圖是從正面看到的圖形是關(guān)鍵.

4.【答案】C

【解析】解:42+60。+45。=180。,

42=75°.

???直尺的上下兩邊平行,

.?.Zl=Z2=75°.

故選:C.

由平角等于180。結(jié)合三角板各角的度數(shù),可求出42的度數(shù),由直尺的上下兩邊平行,利用“兩直

線平行,同位角相等”可得出Nl的度數(shù).

本題考查了平行線的性質(zhì),牢記“兩直線平行,同位角相等”是解題的關(guān)鍵.

5.【答案】D

【解析】解:4、3a2+4α3,不是同類項(xiàng),不能相加,故A不正確,不符合題意;

B、(2α)3=8α3,故B不正確,不符合題意;

C、a6÷a2=a4,故C不正確,不符合題意;

D、2a2-3a=6a3,故。正確,符合題意;

故選:D.

根據(jù)同底數(shù)幕的運(yùn)算法則,積的乘法法則,合并同類項(xiàng)法則,逐個(gè)判斷即可.

本題主要考查了同底數(shù)基的運(yùn)算法則,合并同類項(xiàng),解題的關(guān)鍵是掌握同底數(shù)暴相乘(除),底數(shù)

不變,指數(shù)相加(減);幕的乘方,底數(shù)不變,指數(shù)相乘;積的乘方,把每個(gè)因式分別乘方;合并

同類項(xiàng),字母和相同字母是指數(shù)不變,只把系數(shù)相加減.

6.【答案】A

【解析】解:?;四邊形ABCD為正方形,AB=2,

AC=2√^^2,

???。為正方形ABCD對(duì)角線4C的中點(diǎn),△4CE為等邊三角形,

.?.?AOE=90o,ZTIEO=30°,

.?.AC=AE=2√^,AO=y∏,

.?.OE=√AE2-OA2=(2G2_(√^)2=√-6.

故選:A.

首先利用正方形的性質(zhì)可以求出4C,然后利用等邊三角形的性質(zhì)與勾股定理求出。E.

本題主要考查了正方形的性質(zhì),同時(shí)也利用了等邊三角形的性質(zhì),有一定的綜合性.

7.【答案】C

【解析】解:???關(guān)于X的一元二次方程人工2一2刀+;=0有兩個(gè)不相等的實(shí)數(shù)根,

?產(chǎn)°1

"[4=(-2)2-4×∕c×i>0,

解得:卜<2且卜大0,

k的值不可能是0?

故選:C.

利用二次項(xiàng)系數(shù)非零及根的判別式Z>0,可得出關(guān)于k的一元一次不等式組,解之可得出k的取

值范圍,再對(duì)照四個(gè)選項(xiàng),即可得出結(jié)論.

本題考查了根的判別式以及一元二次方程的定義,牢記“當(dāng)A>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”

是解題的關(guān)鍵.

8.【答案】B

【解析】解:???乙、丁同學(xué)的平均數(shù)比甲、丙同學(xué)的平均數(shù)大,

???應(yīng)從乙和丁同學(xué)中選,

???乙同學(xué)的方差比丁同學(xué)的小,

???乙同學(xué)的成績(jī)較好且狀態(tài)穩(wěn)定,應(yīng)選的是乙同學(xué);

故選:B.

先比較平均數(shù)得到乙同學(xué)和丁同學(xué)成績(jī)較好,然后比較方差得到乙同學(xué)的狀態(tài)穩(wěn)定,于是可決定

選乙同學(xué)去參賽.

本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方

差.方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也

越差;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.

9.【答案】C

【解析】解:???四邊形是菱形,

.?.AC1BD,

,.?4(—3,0),β(0,-4),

?OA=3,OB—4,

.?.AB=BC=CD=AD=S.

???點(diǎn)P從點(diǎn)a出發(fā),以每秒5個(gè)單位長(zhǎng)度沿4→D→C→B→力方向運(yùn)動(dòng),

???點(diǎn)P的運(yùn)動(dòng)軌跡每4秒一個(gè)循環(huán),

2023÷4=505......3,

.?.第2023秒時(shí),點(diǎn)尸的坐標(biāo)與第3秒時(shí)點(diǎn)尸的坐標(biāo)相同,第3秒時(shí)點(diǎn)P在B點(diǎn).

如圖,過點(diǎn)F作FGj.x軸于點(diǎn)G,

V/.OEF+乙OEB=90o,?OBE+Z.OEB=90°,

.?.?OEF=乙OBE,

又???NBoE=乙EGF=90°,且BE=EF,

.?.?OBEN4GEF(AAS),

??GE=OB=4,FG=OE=6?

.?.OG=OE-GE=6-4=2,

:.F(2,6).

故選:C.

首先根據(jù)四邊形ABCD是菱形和4B的坐標(biāo),求出AB=BC=CD=AD=5,再根據(jù)題中運(yùn)動(dòng)方

式可知點(diǎn)P的運(yùn)動(dòng)軌跡每4秒一個(gè)循環(huán),得到第2023秒時(shí)點(diǎn)F的坐標(biāo)與第3秒時(shí)點(diǎn)尸的坐標(biāo)相同.畫

出第3秒時(shí)APEF的位置,過點(diǎn)F作FGIX軸于點(diǎn)G,可證△OBE三△GEF(44S),再根據(jù)全等三角

形對(duì)應(yīng)邊相等,可得點(diǎn)F的坐標(biāo).

本題考查了菱形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形判定與性質(zhì)等知識(shí)點(diǎn),發(fā)現(xiàn)運(yùn)動(dòng)規(guī)律,找到第

2023秒是點(diǎn)P的位置,然后作輔助線構(gòu)造全等三角形是解本題的關(guān)鍵.

10.【答案】B

【解析】解:由油箱中油的體積U與電路中總電阻R總是反比例關(guān)系,設(shè)V?R總=k(k為常數(shù)),

由電流/與R總是反比例關(guān)系,設(shè)/.電流/?R總=k'(k為常數(shù)),

Vk

?-7=F

.?.V=和專為常數(shù)),

???/與V的函數(shù)關(guān)系是正比例函數(shù),

故選:B.

由油箱中油的體積V與電路中總電阻R怒是反比例關(guān)系,電流/與R總是反比例關(guān)系,可得U=Q號(hào)

為常數(shù)),即可得到答案.

本題考查反比例函數(shù)與正比例函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握反比例函數(shù)與正比例函數(shù)的概念.

11.【答案】C(答案不唯一)

【解析】解:--耳、-1.101001...,這些無理數(shù)的絕對(duì)值小于3.

故答案為:(答案不唯一).

由于無理數(shù)就是無限不循環(huán)小數(shù),只要找一個(gè)絕對(duì)值大于-1絕對(duì)值的負(fù)無理數(shù)即可求解.

此題主要考查了無理數(shù)的定義,初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2兀等;開方開不盡的數(shù);以及

<0.1010010001等有這樣規(guī)律的數(shù).

12.【答案】一l<x43

X+5<4①

【解析】解:3χ+19e,

-yL-≥2x-l(2)

由①得:%<-1,

由②得:X≤3,

不等式組的解集為一1<%≤3.

故答案為:—1<X≤3.

分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.

此題考查了解一元一次不等式組,熟練掌握不等式組的解法是解本題的關(guān)鍵.

13.【答案】?

【解析】解:畫樹形圖得:

正反

AA

IF皮TF/5

由樹形圖可知共4種情況,一枚硬幣正面向上,一枚硬幣反面向上的情況數(shù)有2種,所以概率是,=?

故答案是今

列舉出所有情況,看正面都朝上的情況數(shù)占總情況數(shù)的多少即可.

本題考查了求隨機(jī)事件的概率,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求

的情況數(shù)是解決本題的關(guān)鍵.

14.【答案】∣π—IV-3

【解析】解:如圖,當(dāng)FD_LOB時(shí),EF+ED最小,連接OF、BF,

■.EF+EC>DF,

???當(dāng)/、E、。在同一條線上時(shí),即。F最小時(shí),EF+EDftzb,

.?.當(dāng)FD1OB時(shí),EF+ED最小,

???點(diǎn)尸是泥中點(diǎn),^AOB=120°,

乙BoF=2。B=gX120°=60°,

???OF=OB,

尸是等邊三角形,

??,FDLOBi

.?.OD=BD=^OB=;x2=1,

:?DF=√OF2-OD2=√22-12=√-3,

???OA=OB,?AOB=120o,

??.?OBA=?OAB=30o,

:?DE—tcιτι30o?BD-―^-×1=、-’

???S扇形。FB=需=蜜=等SA。DFW。。皿="lxC=苧,SADEB=扣B?g=;X

?O

S_?_s_?,_2Tr46_2R2口

?3陰影—3扇形0FH_%0。尸_XDEB一弓2Γ^^1~,

故答案為:與-殍.

當(dāng)FD1OB時(shí),EF+ED最小,連接OF、BF,根據(jù)點(diǎn)尸是卷中點(diǎn),乙4。B=120。,可得"08=60°,

由。F=OB,可得AFOB為等邊三角形,根據(jù)等邊三角形的性質(zhì)、勾股定理以及銳角三角函數(shù)可

得DF=√-3,OBD=1,DE=??`分別計(jì)算出S扇形0FB、SAOD尸、SADE由S陰影=S扇腕FB_S^ODF~

SADEB,進(jìn)行計(jì)算即可得到答案.

本題主要考查了扇形的面積計(jì)算一求不規(guī)則圖形的面積,等邊三角形的判定與性質(zhì),勾股定理,

解直角三角形,添加適當(dāng)?shù)妮o助線,掌握等邊三角形的判定與性質(zhì),將不規(guī)則圖形面積進(jìn)行轉(zhuǎn)換

為S扇形OFB-SAODF-SADE8,是解題的關(guān)鍵.

15.【答案】5或V35

【解析】解:???NC=90。,AC=2,BC=4,

二根據(jù)勾股定理可得:4B=√AC2+BC2=2屋,

Rt?ABC三Rt?DEF,

:.DE=AB=2門,

????DE尸繞點(diǎn)。順時(shí)針旋轉(zhuǎn)得到△DE'F',

.?.DE=DE'=2√^5.

???點(diǎn)D為AB的中點(diǎn),

???AD=BD=^AB=√-5,

①當(dāng)乙BDE'=90。時(shí),

???乙BDE'=90o,

.?.?ADE'=90°,

.?.AE'=√AD2+DE'2=J(√^^5)2+(2√^5)2=5:

②當(dāng)4DBE'=90。時(shí),

E'

在RtΔ中,BE'=√DE'2-BD2=J(2√^5)2-(√^5)2=H

在RtAABE'中,AE'=√BE'2+AB2=J(√I5)2+(2√T)2=?Γ35-

綜上:AE'的長(zhǎng)為5或一法.

故答案為:5或?/35.

根據(jù)勾股定理可求出AB=2√^5,則4。=BD=?AB=√-5,然后進(jìn)行分類討論:①當(dāng)心BOE'=

90。時(shí),②當(dāng)NDBE'=90。時(shí),據(jù)此解答.

本題主要考查了勾股定理,旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握勾股定理的內(nèi)容,以及旋轉(zhuǎn)前后對(duì)應(yīng)

邊相等的性質(zhì).

16.【答案】解:(l)φ-1-ΛΛ12-(2-√3)°

=3-2√^-1

=2—2√-3;

⑵(i+5÷一

_x+1X

~~*(x+1)(x-l)

1

=x≡l,

V%≠0,%—1≠0,X+1≠0,

?X≠0,X≠1,%≠—1,

???當(dāng)X=2時(shí),原式=??-=1.

Z—1

【解析】(1)先化簡(jiǎn)各式,然后再進(jìn)行計(jì)算即可解答;

(2)先利用異分母分式加減法法則計(jì)算括號(hào)里,再算括號(hào)外,然后把X的值代入化簡(jiǎn)后的式子進(jìn)行

計(jì)算,即可解答.

本題考查了分式的化簡(jiǎn)求值,實(shí)數(shù)的運(yùn)算,零指數(shù)幕,負(fù)整數(shù)指數(shù)幕,準(zhǔn)確熟練地進(jìn)行計(jì)算是解

題的關(guān)鍵.

17.【答案】40①②

【解析】解:(1)將這31個(gè)省、自治區(qū)、直轄市人口數(shù)從小到大排列處在中間位置的數(shù)是40百萬人,

因此中位數(shù)是40百萬人,

故答案為:40;

(2)①全國大陸31個(gè)省、自治區(qū)、直轄市中人口數(shù)大于等于100(百萬人)的有一2個(gè)地區(qū),故原結(jié)論

正確,符合題意;

②相對(duì)于2020年,2021年全國大陸人口自然增長(zhǎng)率降低,全國大陸人口增長(zhǎng)緩慢,故原結(jié)論正

確,符合題意;

③2010—2021年全國大陸人口自然增長(zhǎng)率的情況是:2010-2012,2013-2014,2015-2016

年增長(zhǎng)率持續(xù)上升;2012-2013,2014-2015,2016—2021年增長(zhǎng)率持續(xù)降低,

故原結(jié)論錯(cuò)誤,不符合題意.

所以結(jié)論正確的是①②.

故答案為:①②;

(3)2016-2021年全國大陸人口數(shù)增長(zhǎng)緩慢,全國大陸人口自然增長(zhǎng)率持續(xù)降低.

看法:放開計(jì)劃生育,鼓勵(lì)多生優(yōu)生,以免人口自然增長(zhǎng)率為負(fù)(答案不唯一).

(1)根據(jù)已知發(fā)現(xiàn)中位數(shù)在第三組內(nèi),從小到大排列找出處在中間位置的一個(gè)數(shù)即可求出中位數(shù);

(2)①根據(jù)頻數(shù)分布直方圖進(jìn)行判斷即可;

②根據(jù)條形圖與折線圖即可判斷;

③根據(jù)折線圖即可判斷;

(3)根據(jù)條形圖與折線圖可寫出2016-2021年全國大陸人口數(shù)、全國大陸人口自然增長(zhǎng)率的變化

趨勢(shì),根據(jù)變化趨勢(shì)寫出看法即可.

本題考查頻數(shù)分布直方圖、條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖,中位數(shù),理解統(tǒng)計(jì)圖中數(shù)量之間的關(guān)系是

正確解答的前提.

18.【答案】解:(1)???點(diǎn)4(—1,一3)在反比例函數(shù)y=

?k=3,

???反比例函數(shù)解析式為:y=Z?

JX

???8(3,71)點(diǎn)在丫=:圖象上,

?n=1,8(3,1).

???點(diǎn)做一1,一3),8(3,1)在一次函數(shù)y=αx+b的圖象上,

—Q+b=-3

3a+b=1,w?zl2

,一次函數(shù)解析式為:y=%-2.

(2)點(diǎn)E位于點(diǎn)。右方時(shí),如圖示:TH>1或一3VTH<0.

【解析】(1)由4(一1,一3)得反比例函數(shù)解析式y(tǒng)=j,再求出B(3,l),待定系數(shù)法法求出一次函數(shù)

解析式;

(2)根據(jù)點(diǎn)E在點(diǎn)。的右方,可從圖象上直接寫出函數(shù)值的取值范圍即可.

本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求函數(shù)解析式.

19.【答案】解:由題意得:MF1CG,AM=BN=1米,F(xiàn)G=NB+DE=1.5米,MN=AB=21

米,

設(shè)NF=X米,

.?.MF=MN+NF=(x+21)米,

在RtACNF中,Z.CNF=45°,

.?.CF=NF-tan45o=x(米),

在RtACMF中,4CMF=37。,

:.CF=MF-tan37o≈0.75(x+21)米,

:,X=0.75(X+21),

解得:X=63,

.?.CF=63米,

.?.CG=CF+FG=63+1.5=64.5(米),

三門峽黃河公鐵兩用大橋水面上門式空心墩墩CG的高度約為64.5米.

【解析】根據(jù)題意可得:MF1CG,AM=BN=1米,F(xiàn)G=NB+DE=1.5米,MN=AB=21米,

然后設(shè)NF=X米,則MF=(X+21)米,在RtACNF中,利用銳角三角函數(shù)的定義求出CF的長(zhǎng),

再在RtACMF中,利用銳角三角函數(shù)的定義求出CF的長(zhǎng),從而列出關(guān)于X的方程,進(jìn)行計(jì)算即可

解答.

本題考查了解直角三角形的應(yīng)用-仰角俯角問題,熟練掌握銳角三角函數(shù)的定義是解題的關(guān)鍵.

20.【答案】解:(1)設(shè)麗麗所買皮衣的單價(jià)是X元,毛衣的單價(jià)是y元,

由題意得:{工短/,

解得:{J:需,

3000×10%=300(元),

答:麗麗所買皮衣的單價(jià)是2600元,毛衣的單價(jià)是400元;麗麗可以到線上客服處領(lǐng)取300元補(bǔ)貼.

(2)設(shè)大楊哥賣出毛衣ɑ件,則賣出皮衣(300-a)件,

由題意得:10%×[2600(300-a)+400α]≤50000,

解得:α2127得,

因?yàn)棣翞檎麛?shù),

所以至少要賣出毛衣128件.

【解析】(1)設(shè)麗麗所買皮衣的單價(jià)是X元,毛衣的單價(jià)是y元,根據(jù)題意建立方程組,解方程組即

可得X,y的值,再利用3000乘以10%即可得補(bǔ)貼的錢數(shù);

(2)設(shè)大楊哥賣出毛衣ɑ件,則賣出皮衣(300-α)件,根據(jù)領(lǐng)取的補(bǔ)貼不超過50000元建立不等式,

解不等式即可得.

本題考查了二元一次方程組和一元一次不等式的應(yīng)用,正確建立方程組和不等式是解題關(guān)鍵.

21.【答案】同弧所對(duì)的圓周角相等同角的余角相等(2,0)

【解析】(1)解:依據(jù)①:同弧所對(duì)的圓周角相等,

依據(jù)②:同角的余角相等.

故答案為:同弧所對(duì)的圓周角相等,同角的余角相等;

(2)證明:在。M上任取一點(diǎn)C',連接4C',BC',BC'與。P相交于點(diǎn)。,連接4D,如圖,

???點(diǎn)C,。在C)P上,

???Z-ACB=Z-ADB,

又?.?乙4DB是△力C'D的一個(gè)外角,

.?.Z.ADB>/.AC'B,

Z.ACB>?AC'B,

?.?0P與OM相切于點(diǎn)C,

???點(diǎn)C為。P與OM的唯一公共點(diǎn),

即當(dāng)且僅當(dāng)△4BC的外接圓與OM相切(。P與。M相切于點(diǎn)C)時(shí)44CB最大.

過切點(diǎn)C作OP的直徑CQ,連接BQ,如圖,

N

則NCBQ=90。,CQ1OM9

???Z.Q+乙BCQ=90o,?BCQ+Z-OCB=90°

:?Z-Q=?OCB,

又???zQ=204C,

???△OCQsAOBC,

ΛOA~~OC9

.?.OC2=OA-OB-,

(3)解:???點(diǎn)4B的坐標(biāo)分別是((U)和(0,4),

.??OA—1,OB=4,

.?.A,B是NXOy的邊Oy上的定點(diǎn),

???由彌勒定理可知:當(dāng)且僅當(dāng)AABC的外接圓與OX相切時(shí)44CB最大,此時(shí)0。2=OA-OB,

.?.OC2=Ix4,

.?.OC=2.

.?.C(2,0).

故答案為:(2,0).

(1)利用圓周角定理和直角三角形的性質(zhì)解答即可;

(2)利用圓周角定理和三角形的外角大于任意一個(gè)和它不相鄰的內(nèi)角的性質(zhì)解答即可得出乙4C8最

大;再利用相似三角形的判定與性質(zhì)解答即可得出結(jié)論;

(3)利用彌勒定理求出線段OC即可得出結(jié)論.

本題主要考查了圓的有關(guān)性質(zhì),圓周角定理,圓的切線的性質(zhì)定理,三角形的外角的性質(zhì),直角

三角形的性質(zhì),相似三角形的判定與性質(zhì),連接直徑所對(duì)的圓周角和經(jīng)過切點(diǎn)法直徑是解決此類

問題常添加的輔助線.

22.【答案】解:(1)把(0,0)代入y=+2nχ-M得一∏2=0,解得I=0;

(2)①???四邊形OABC是矩形,

?OA∕∕BC,OC//AB,

???/1(4,0),8(4,-3).

???C點(diǎn)坐標(biāo)為(0,-3);

@y=-X2+2nx—n2=—(x—n)2>

二拋物線開口向下,頂點(diǎn)在X軸上,頂點(diǎn)坐標(biāo)為(n,0),

當(dāng)對(duì)稱軸右半部分的拋物線經(jīng)過點(diǎn)C時(shí),拋物線與矩形。ABC的邊恰有1個(gè)交點(diǎn),此時(shí)-(0-n)2=

—3,

解得%=—∕-3,n2=√~3>

當(dāng)拋物線經(jīng)過原點(diǎn)時(shí),拋物線與矩形OZlBC的邊恰有2個(gè)交點(diǎn),此時(shí)為=0,

???當(dāng)一,百<n≤0時(shí),拋物線與矩形的邊OABC有2個(gè)交點(diǎn);

當(dāng)拋物線過點(diǎn)4時(shí),拋物線與矩形的邊OABC恰有2個(gè)交點(diǎn),此時(shí)-(4-n)2=0,解得%=4,

當(dāng)對(duì)稱軸左側(cè)的拋物線經(jīng)過點(diǎn)B時(shí),拋物線與矩形OaBC的邊恰有1個(gè)交點(diǎn),此時(shí)-(4-兀)2=-3,

解得場(chǎng)=4—?∕-3>n6=4+V-3.

二當(dāng)4≤n<4+C時(shí),拋物線與矩形OABC的邊有2個(gè)交點(diǎn);

綜上所述,拋物線y=x2-2nx+/與該矩形的邊有2個(gè)交點(diǎn)時(shí)n的取值范圍為—,百<n≤0或

4≤n<4+√-3?

【解析】(1)把(0,0)代入y=-X2+2nx一次得一於=0,即可得到n的值;

(2)①由四邊形OABC是矩形得到。4〃BC,OC//AB,由A(4,0),B(4,-3)即可得到點(diǎn)C的坐標(biāo);

②由y=-/+2nx-彥=-(方一n產(chǎn)得到拋物線開口向下,頂點(diǎn)在X軸上,頂點(diǎn)坐標(biāo)為(n,0),分

情況討論和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論