




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市上師大附中2024屆高三第四次模擬考試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}2.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.23.已知雙曲線的焦距為,若的漸近線上存在點,使得經過點所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.4.已知函數為奇函數,且,則()A.2 B.5 C.1 D.35.已知實數,則的大小關系是()A. B. C. D.6.已知函數,則不等式的解集是()A. B. C. D.7.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1208.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.9.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.410.已知是虛數單位,則()A. B. C. D.11.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.12.已知函數的最小正周期為,為了得到函數的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數為______用數字作答14.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為_______.15.在數列中,,,曲線在點處的切線經過點,下列四個結論:①;②;③;④數列是等比數列;其中所有正確結論的編號是______.16.設實數,若函數的最大值為,則實數的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.18.(12分)設函數.(1)求的值;(2)若,求函數的單調遞減區間.19.(12分)自湖北武漢爆發新型冠狀病毒惑染的肺炎疫情以來,武漢醫護人員和醫療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫用防護服2.6萬套N95口軍47.9萬個,醫用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數:A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?20.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發生損壞時,需要送維修處維修.工廠規定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數,具體數據如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數.(Ⅰ)求X的分布列與數學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數的數學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)21.(12分)某早餐店對一款新口味的酸奶進行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應,每天的銷售數據按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結束后,這款酸奶正式上市,廠家只提供整箱批發:大箱每箱瓶,批發成本元;小箱每箱瓶,批發成本元.由于酸奶保質期短,當天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設早餐店批發一大箱時,當天這款酸奶的利潤為隨機變量,批發一小箱時,當天這款酸奶的利潤為隨機變量,求和的分布列和數學期望;②以利潤作為決策依據,該早餐店應每天批發一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發成本.22.(10分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優秀傳統文化中的動漫題材,創作出一批又一批的優秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統計數據如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據集合的并集、補集的概念,可得結果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎題.2、C【解析】
首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.3、B【解析】
由可得;由過點所作的圓的兩條切線互相垂直可得,又焦點到雙曲線漸近線的距離為,則,進而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經過點所作的圓的兩條切線互相垂直,必有,而焦點到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質的應用.4、B【解析】
由函數為奇函數,則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數中的應用,考查學生分析問題的能力,難度較易.5、B【解析】
根據,利用指數函數對數函數的單調性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數函數對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.6、B【解析】
由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.7、C【解析】
可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.8、D【解析】
設出的坐標為,依據題目條件,求出點的軌跡方程,寫出點的參數方程,則,根據余弦函數自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數方程為(為參數)則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據條件求解各種軌跡方程的能力,熟練掌握代數式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數法;⑤待定系數法9、A【解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.10、B【解析】
根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.11、D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.12、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數的圖象與性質.【名師點睛】三角函數圖象變換方法:二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數.【詳解】二項展開式的通項為令得的系數為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.14、【解析】
設為的中點,根據弦長公式,只需最小,在中,根據余弦定理將表示出來,由,得到,結合弦長公式得到,求出點的軌跡方程,即可求解.【詳解】設為的中點,在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點睛】本題考查直線與圓的位置關系、相交弦長的最值,解題的關鍵求出點的軌跡方程,考查計算求解能力,屬于中檔題.15、①③④【解析】
先利用導數求得曲線在點處的切線方程,由此求得與的遞推關系式,進而證得數列是等比數列,由此判斷出四個結論中正確的結論編號.【詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數列,從而,,.故所有正確結論的編號是①③④.故答案為:①③④【點睛】本小題主要考查曲線的切線方程的求法,考查根據遞推關系式證明等比數列,考查等比數列通項公式和前項和公式,屬于基礎題.16、【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設,則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,所以,由,則,.由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設,則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質、圓的軌跡方程、直線與橢圓的位置關系中定值問題,考查了學生的計算能力,屬于中檔題.18、(1)(2)的遞減區間為和【解析】
(1)化簡函數,代入,計算即可;(2)先利用正弦函數的圖象與性質求出函數的單調遞減區間,再結合即可求出.【詳解】(1),從而.(2)令.解得.即函數的所有減區間為,考慮到,取,可得,,故的遞減區間為和.【點睛】本題主要考查了三角函數的恒等變形,正弦函數的圖象與性質,屬于中檔題.19、每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【解析】
設每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標函數取最小值的整數解,即可得解.【詳解】設每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標函數,如圖所示,為不等式組表示的可行域,由圖可知,當直線經過點時,最小,解方程組,解得,,然而,故點不是最優解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.【點睛】本題考查了線性規劃問題中的最優整數解問題,考查了數形結合的思想,解題關鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數,同時注意整點的選取,屬于中檔題.20、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數學期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.21、;①詳見解析;②應該批發一大箱.【解析】
酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對立事件概率公式求解即可.①若早餐店批發一大箱,批發成本為元,依題意,銷量有,,,四種情況,分別求出相應概率,列出分布列,求出的數學期望,若早餐店批發一小箱,批發成本為元,依題意,銷量有,兩種情況,分別求出相應概率,由此求出的分布列和數學期望;②根據①中的計算結果,,從而早餐應該批發一大箱.【詳解】解:根據圖中數據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論