上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第1頁
上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第2頁
上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第3頁
上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第4頁
上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過圓外一點(diǎn)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是().A. B. C. D.2.設(shè),,則的值為()A. B.C. D.3.已知集合,則()A. B. C. D.4.已知函,,則的最小值為()A. B.1 C.0 D.5.已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.6.已知拋物線C:,過焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn)(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.37.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.8.已知,,由程序框圖輸出的為()A.1 B.0 C. D.9.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.10.已知是兩條不重合的直線,是兩個(gè)不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則11.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長度 B.向右平移個(gè)單位長度C.向左平移個(gè)單位長度 D.向右平移個(gè)單位長度12.是拋物線上一點(diǎn),是圓關(guān)于直線的對稱圓上的一點(diǎn),則最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角三角形中,為直角,,點(diǎn)在線段上,且,若,則的正切值為_____.14.平面區(qū)域的外接圓的方程是____________.15.將函數(shù)的圖象向左平移個(gè)單位長度,得到一個(gè)偶函數(shù)圖象,則________.16.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是直線:上位于第一象限內(nèi)的一點(diǎn).已知以為直徑的圓被直線所截得的弦長為,則點(diǎn)的坐標(biāo)__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求證:當(dāng)時(shí),;(2)若對任意存在和使成立,求實(shí)數(shù)的最小值.18.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.19.(12分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.20.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個(gè)區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點(diǎn)D,E分別在邊,上);再取的中點(diǎn)M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點(diǎn)D的位置,使兩條直道的長度之和最小,并求出最小值.21.(12分)己知函數(shù).(1)當(dāng)時(shí),求證:;(2)若函數(shù),求證:函數(shù)存在極小值.22.(10分)已知橢圓的離心率為,點(diǎn)在橢圓上.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線交橢圓于兩點(diǎn),線段的中點(diǎn)在直線上,求證:線段的中垂線恒過定點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】過圓外一點(diǎn),引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程為,故選.2、D【解析】

利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進(jìn)而求得的值,最后利用正切差角公式求得結(jié)果.【詳解】,,,,,,,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)求值問題,涉及到的知識(shí)點(diǎn)有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.3、B【解析】

計(jì)算,再計(jì)算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點(diǎn)睛】本題考查了集合的交集,意在考查學(xué)生的計(jì)算能力.4、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.5、A【解析】

首先求得時(shí),的取值范圍.然后求得時(shí),的單調(diào)性和零點(diǎn),令,根據(jù)“時(shí),的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【詳解】當(dāng)時(shí),.當(dāng)時(shí),為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時(shí),.”,所以令,得,因?yàn)椋院瘮?shù)的零點(diǎn)所在區(qū)間為.故選:A【點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6、B【解析】

設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因?yàn)椋裕茫裕矗?故選:B.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.7、A【解析】

根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)椋杂沙绦蚩驁D知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.8、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.9、D【解析】

與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點(diǎn)睛】本題考查冪和對數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.10、B【解析】

根據(jù)空間中線線、線面位置關(guān)系,逐項(xiàng)判斷即可得出結(jié)果.【詳解】A選項(xiàng),若,,,,則或與相交;故A錯(cuò);B選項(xiàng),若,,則,又,是兩個(gè)不重合的平面,則,故B正確;C選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故C錯(cuò);D選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故D錯(cuò);故選B【點(diǎn)睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于常考題型.11、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.12、C【解析】

求出點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為點(diǎn),則,整理得,解得,即點(diǎn),所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點(diǎn),則,當(dāng)時(shí),取最小值,因此,.故選:C.【點(diǎn)睛】本題考查拋物線上一點(diǎn)到圓上一點(diǎn)最值的計(jì)算,同時(shí)也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3【點(diǎn)睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.14、【解析】

作出平面區(qū)域,可知平面區(qū)域?yàn)槿切危蟪鋈切蔚娜齻€(gè)頂點(diǎn)坐標(biāo),設(shè)三角形的外接圓方程為,將三角形三個(gè)頂點(diǎn)坐標(biāo)代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域?yàn)椋?lián)立,解得,則點(diǎn),同理可得點(diǎn)、,設(shè)的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點(diǎn)睛】本題考查三角形外接圓方程的求解,同時(shí)也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運(yùn)算求解能力,屬于中等題.15、【解析】

根據(jù)平移后關(guān)于軸對稱可知關(guān)于對稱,進(jìn)而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個(gè)單位長度后得到偶函數(shù)圖象,即關(guān)于軸對稱關(guān)于對稱即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)三角函數(shù)的對稱軸求解參數(shù)值的問題,關(guān)鍵是能夠通過平移后的對稱軸得到原函數(shù)的對稱軸,進(jìn)而利用特殊值的方式來進(jìn)行求解.16、【解析】

依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點(diǎn)間的距離公式即可求出,進(jìn)而得出點(diǎn)坐標(biāo).【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因?yàn)闉閳A的直徑,則所對的圓周角,則,則為點(diǎn)到直線:的距離.所以,則.又因?yàn)辄c(diǎn)在直線:上,設(shè),則.解得,則.故答案為:【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)不等式等價(jià)于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個(gè)不同零點(diǎn),且,利用導(dǎo)數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當(dāng)時(shí),由,所以在上是減函數(shù),所以,故.因?yàn)椋裕援?dāng)時(shí),.(2)由(1)當(dāng)時(shí),;任意,存在和使成立,所以在上有兩個(gè)不同零點(diǎn),且,(1)當(dāng)時(shí),在上為減函數(shù),不合題意;(2)當(dāng)時(shí),,由題意知在上不單調(diào),所以,即,當(dāng)時(shí),,時(shí),,所以在上遞減,在上遞增,所以,解得,因?yàn)椋猿闪ⅲ旅孀C明存在,使得,取,先證明,即證,令,則在時(shí)恒成立,所以成立,因?yàn)椋詴r(shí)命題成立.因?yàn)椋?故實(shí)數(shù)的最小值為.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立、等式能成立中的應(yīng)用,前者注意將欲證不等式合理變形,轉(zhuǎn)化為容易證明的新不等式,后者需根據(jù)等式能成立的特點(diǎn)確定出函數(shù)應(yīng)該具有的性質(zhì),再利用導(dǎo)數(shù)研究該性質(zhì),本題屬于難題.18、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】

(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進(jìn)而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點(diǎn)在直線上,直線過圓的圓心.因此,是圓的直徑,.【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時(shí)也考查了直線截圓所得弦長的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.19、(1)見解析;(2).【解析】

(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價(jià)轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對實(shí)數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當(dāng)時(shí),對任意的,,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,不符合題意;②當(dāng)時(shí),;③當(dāng)時(shí),令,得,此時(shí),函數(shù)單調(diào)遞增;令,得,此時(shí),函數(shù)單調(diào)遞減...令,設(shè),則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式,同時(shí)也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.20、(1),.,.(2)當(dāng)百米時(shí),兩條直道的長度之和取得最小值百米.【解析】

(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計(jì)算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關(guān)于x的函數(shù)關(guān)系式為,.在和中,由余弦定理,得①②因?yàn)镸為的中點(diǎn),所以.由①②,得,所以,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.法2:因?yàn)樵谥校?所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.在中,因?yàn)镸為的中點(diǎn),所以.所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.(2)由(1)得,兩條直道的長度之和為(當(dāng)且僅當(dāng)即時(shí)取“”).故當(dāng)百米時(shí),兩條直道的長度之和取得最小值百米.【點(diǎn)睛】本題考查了余弦定理和基本不等式,第一問也可以利用三角形中的向量關(guān)系進(jìn)行求解,屬于中檔題.21、(1)證明見解析(2)證明見解析【解析】

(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當(dāng)時(shí),,;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,由零點(diǎn)存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因?yàn)椋遥剩屎瘮?shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,故當(dāng)時(shí),;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時(shí),,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時(shí),函數(shù)有極小值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論