




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省祿豐縣民族中學高考數學二模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.2.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區域為不平等區域,表示其面積,為的面積,將稱為基尼系數.對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④3.若,則的值為()A. B. C. D.4.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-285.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.6.已知數列的通項公式為,將這個數列中的項擺放成如圖所示的數陣.記為數陣從左至右的列,從上到下的行共個數的和,則數列的前2020項和為()A. B. C. D.7.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數是().A.1 B.1 C.3 D.48.已知為定義在上的奇函數,且滿足當時,,則()A. B. C. D.9.已知命題,,則是()A., B.,.C., D.,.10.設,,,則的大小關系是()A. B. C. D.11.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.12.已知集合,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.14.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.15.設實數x,y滿足,則點表示的區域面積為______.16.內角,,的對邊分別為,,,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.20.(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.21.(12分)我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續所需時間不超過4天辦理社保手續所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87922.(10分)已知函數.(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.2、A【解析】
對于①,根據基尼系數公式,可得基尼系數越小,不平等區域的面積越小,國民分配越公平,所以①正確.對于②,根據勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.3、C【解析】
根據,再根據二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數學運算能力4、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.5、A【解析】
利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.6、D【解析】
由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數列型數陣的求和,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.7、C【解析】
由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.8、C【解析】
由題設條件,可得函數的周期是,再結合函數是奇函數的性質將轉化為函數值,即可得到結論.【詳解】由題意,,則函數的周期是,所以,,又函數為上的奇函數,且當時,,所以,.故選:C.【點睛】本題考查函數的周期性,由題設得函數的周期是解答本題的關鍵,屬于基礎題.9、B【解析】
根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.10、A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.11、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.12、D【解析】
根據集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
寫出所在直線方程,求出圓心到直線的距離,結合題意可得關于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點睛】本題考查直線和圓的位置關系以及點到直線的距離公式應用,考查數形結合的解題思想方法,屬于中檔題.14、【解析】
根據正弦定理得,根據余弦定理得2PF1?PF2cos∠F1PF23,聯立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯解,得,可得,∴雙曲線的,結合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和轉化能力.15、【解析】
先畫出滿足條件的平面區域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.16、【解析】∵,∴,即,∴,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.18、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉化可求,利用基本不等式可將轉化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.19、(1);(2)【解析】
(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯立方程,得到關于的一元二次方程,結合根與系數關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質,考查學生的計算求解能力,屬于難題.20、(1)見解析(2)【解析】
(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增若,當時,;當時.,所以在上單調遞增,在上單調遞減(2)由(1)可知,當時,在上單調遞增,則.則不合題意當時,在上單調遞減,在上單調遞增.則,即又因為單調遞增,且,故綜上,【點睛】本題主要考查利用導數研究函數的單調性和最值,意在考查學生對這些知識的理解掌握水平.21、(1)列聯表見解析,有;(2)分布列見解析,.【解析】
(1)根據題意,結合已知數據即可填寫列聯表,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中科學探究:科學探究與TiO?石墨烯光催化技術實驗的結合教學論文
- 繪本教學在小學英語課堂中的創新與挑戰研究論文
- 智能家居節能技術在智能家居產品中的市場競爭力分析論文
- 藝術班培訓管理制度
- 芽苗菜栽培管理制度
- 茶葉類門店管理制度
- 除雪劑使用管理制度
- 訪問控制策略安全評估
- 財務會計建筑業會計科目
- 大班幼兒散文詩四季的禮物
- 安能快遞加盟合同協議
- 2024年大學生就業力調研報告-智聯招聘-202405
- 防靜電地膠板施工工藝及技術方案、措施
- 縫紉車間安全培訓課件
- 成人ICU患者外周動脈導管管理專家共識解讀
- 電力設備預防性試驗及維護合同
- 2025年各地低空經濟政策匯編
- 搬運重物安全培訓
- 2025年共青團入團考試測試題庫及答案
- 磷酸鐵及磷酸鐵鋰異物防控管理
- 《宮頸癌防治知識普及》課件
評論
0/150
提交評論