




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省南京市秦淮區數學九上期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.如圖,在菱形ABCD中,AB=5,對角線AC=6.若過點A作AE⊥BC,垂足為E,則AE的長為()A.4 B.2.4 C.4.8 D.52.設,,是拋物線(,為常數,且)上的三點,則,,的大小關系為()A. B. C. D.3.化簡的結果是()A. B. C. D.4.如圖,數軸上的點,,,表示的數分別為,,,,從,,,四點中任意取兩點,所取兩點之間的距離為的概率是()A. B. C. D.5.雙曲線y=在第一、三象限內,則k的取值范圍是()A.k>0 B.k<0 C.k>1 D.k<16.將二次函數y=5x2的圖象先向右平移2個單位,再向下平移3個單位,得到的函數圖象的解析式為()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x+2)2﹣3 D.y=5(x﹣2)2﹣37.下列四種說法:①如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等;②將1010減去它的,再減去余下的,再減去余下的,再減去余下的,……,依此類推,直到最后減去余下的,最后的結果是1;③實驗的次數越多,頻率越靠近理論概率;④對于任何實數x、y,多項式的值不小于1.其中正確的個數是()A.1 B.1 C.3 D.48.△ABC中,∠C=90°,內切圓與AB相切于點D,AD=2,BD=3,則△ABC的面積為()A.3 B.6 C.12 D.無法確定9.矩形的周長為12cm,設其一邊長為xcm,面積為ycm2,則y與x的函數關系式及其自變量x的取值范圍均正確的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)10.如圖,四邊形ABCD為⊙O的內接四邊形,已知∠BCD=130°,則∠BOD=()A.B.C.D.11.如圖,菱形ABCD中,EF⊥AC,垂足為點H,分別交AD、AB及CB的延長線交于點E、M、F,且AE:FB=1:2,則AH:AC的值為()A. B. C. D.12.下列圖形中,∠1與∠2是同旁內角的是()A.B.C.D.二、填空題(每題4分,共24分)13.如圖,在中,,,,點是斜邊的中點,則_______;14.如圖,拋物線與直線的兩個交點坐標分別為,則關于x的方程的解為________.15.如圖,在?ABCD中,AB=10,AD=6,AC⊥BC.則BD=_____.16.從地面豎直向上拋出一小球,小球的高度h(米)與小球運動時間t(秒)的關系式是h=30t﹣5t2,小球運動中的最大高度是_____米.17.已知一元二次方程x2+kx-3=0有一個根為1,則k的值為__________.18.寫出一個二次函數關系式,使其圖象開口向上_______.三、解答題(共78分)19.(8分)如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.(1)求拋物線的解析式;(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內一點,當以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標.20.(8分).如圖,小明在大樓的東側A處發現正前方仰角為75°的方向上有一熱氣球在C處,此時,小亮在大樓的西側B處也測得氣球在其正前方仰角為30°的位置上,已知AB的距離為60米,試求此時小明、小亮兩人與氣球的距離AC和BC.(結果保留根號)21.(8分)在平面直角坐標系中(如圖),已知二次函數(其中a、b、c是常數,且a≠0)的圖像經過點A(0,-3)、B(1,0)、C(3,0),聯結AB、AC.(1)求這個二次函數的解析式;(2)點D是線段AC上的一點,聯結BD,如果,求tan∠DBC的值;(3)如果點E在該二次函數圖像的對稱軸上,當AC平分∠BAE時,求點E的坐標.22.(10分)解方程:(1)x2+3=4x(2)3x(x-3)=-423.(10分)(1)如圖1,O是等邊△ABC內一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉后得到△BCD,連接OD.求:①旋轉角的度數;線段OD的長為.②求∠BDC的度數;(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉后得到△BCD,連接OD.當OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.24.(10分)現有A,B,C,D四張不透明的卡片,除正面上的圖案不同外,其他均相同.將這4張卡片背面向上洗勻后放在桌面上.(Ⅰ)從中隨機取出1張卡片,卡片上的圖案是中心對稱圖形的概率是_____;(Ⅱ)若從中隨機抽取一張卡片,不放回,再從剩下的3張中隨機抽取1張卡片,請用畫樹形圖或列表的方法,求兩次抽取的卡片都是軸對稱圖形的概率.25.(12分)如圖,在矩形中,,為邊上一點,把沿直線折疊,頂點折疊到,連接與交于點,連接與交于點,若.(1)求證:;(2)當時,,求的長;(3)連接,直接寫出四邊形的形狀:.當時,并求的值.26.2019年九龍口詩詞大會在九龍口鎮召開,我校九年級選拔了3名男生和2名女生參加某分會場的志愿者工作.本次學生志愿者工作一共設置了三個崗位,分別是引導員、聯絡員和咨詢員.(1)若要從這5名志愿者中隨機選取一位作為引導員,求選到女生的概率;(2)若甲、乙兩位志愿者都從三個崗位中隨機選擇一個,請你用畫樹狀圖或列表法求出他們恰好選擇同一個崗位的概率.(畫樹狀圖和列表時可用字母代替崗位名稱)
參考答案一、選擇題(每題4分,共48分)1、C【分析】連接BD,根據菱形的性質可得AC⊥BD,AO=AC,然后根據勾股定理計算出BO長,再算出菱形的面積,然后再根據面積公式BC?AE=AC?BD可得答案.【詳解】連接BD,交AC于O點,∵四邊形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面積是∴BC?AE=24,故選C.2、C【分析】根據二次函數的性質得到拋物線拋物線y=a2(x+1)2+k(a,k為常數,且a≠0)的開口向上,對稱軸為直線x=-1,然后根據三個點離對稱軸的遠近判斷函數值的大小.【詳解】解:∵拋物線拋物線y=a2(x+1)2+k(a,k為常數,且a≠0)的開口向上,對稱軸為直線x=-1,
而A(-2,y1)離直線x=-1的距離最近,C(2,y1)點離直線x=-1最遠,
∴y1<y2<y1.
故選:C.【點睛】本題考查了二次函數圖象上點的坐標特征:二次函數圖象上點的坐標滿足其解析式.也考查了二次函數的性質.3、D【解析】將除法變為乘法,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.4、D【分析】利用樹狀圖求出可能結果即可解答.【詳解】解:畫樹狀圖為:共有12種等可能的結果數,其中所取兩點之間的距離為2的結果數為4,所取兩點之間的距離為2的概率==.故選D.【點睛】本題考查畫樹狀圖或列表法求概率,掌握畫樹狀圖的方法是解題關鍵.5、C【分析】根據反比例函數的性質,由于圖象在第一三象限,所以k-1>0,解不等式求解即可.【詳解】解:∵函數圖象在第一、三象限,∴k﹣1>0,解得k>1.故選:C.【點睛】本題考查了反比例函數的性質,對于反比例函數y=(k≠0),(1)k>0,反比例函數圖象在一、三象限;(2)k<0,反比例函數圖象在第二、四象限內.6、D【分析】直接根據“上加下減,左加右減”的原則進行解答即可.【詳解】由“左加右減”的原則可知,將二次函數y=5x2的圖象先向右平移2個單位所得函數的解析式為:y=5(x﹣2)2,由“上加下減”的原則可知,將二次函數y=5(x﹣2)2的圖象先向下平移3個單位所得函數的解析式為:y=5(x﹣2)2﹣3,故選D.【點睛】本題考查了二次函數的圖象的平移變換,熟知函數圖象幾何變換的法則是解答此題的關鍵.7、C【分析】畫圖可判斷①;將②轉化為算式的形式,求解判斷;③是用頻率估計概率的考查;④中配成平方的形式分析可得.【詳解】如下圖,∠1=∠1,∠1+∠3=180°,即兩邊都平行的角,可能相等,也可能互補,①錯誤;②可用算式表示為:,正確;實驗次數越多,則頻率越接近概率,③正確;∵≥0,≥0∴≥1,④正確故選:C【點睛】本題考查平行的性質、有理數的計算、頻率與概率的關系、利用配方法求最值問題,注意②中,我們要將題干文字轉化為算式分析.8、B【分析】易證得四邊形OECF是正方形,然后由切線長定理可得AC=2+r,BC=3+r,AB=5,根據勾股定理列方程即可求得答案.【詳解】如圖,設⊙O分別與邊BC、CA相切于點E、F,連接OE,OF,
∵⊙O分別與邊AB、BC、CA相切于點D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四邊形OECF是矩形,
∵OE=OF,
∴四邊形OECF是正方形,
設EC=FC=r,
∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,
在Rt△ABC中,=+,
∴=+,
∴,
即
解得:或(舍去).
∴⊙O的半徑r為1,∴.故選:B【點睛】本題考查了三角形的內切圓的性質、正方形的判定與性質、切線長定理以及勾股定理.注意掌握輔助線的作法,注意數形結合思想與方程思想的應用.9、D【分析】已知一邊長為xcm,則另一邊長為(6-x)cm,根據矩形的面積公式即可解答.【詳解】解:已知一邊長為xcm,則另一邊長為(6-x)cm.
則y=x(6-x)化簡可得y=-x2+6x,(0<x<6),
故選:D.【點睛】此題主要考查了根據實際問題列二次函數關系式的知識,解題的關鍵是用x表示出矩形的另一邊,此題難度一般.10、C【解析】根據圓內接四邊形的性質求出∠A的度數,再根據圓周角定理求解即可.【詳解】∵四邊形ABCD為⊙O的內接四邊形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圓周角定理得,2∠A=∠BOD=100°,故選C.【點睛】本題考查了圓內接四邊形的性質,圓周角定理,熟練掌握圓內接四邊形的對角互補是解題的關鍵.11、B【分析】連接BD,如圖,利用菱形的性質得AC⊥BD,AD=BC,AD∥BC,再證明EF∥BD,接著判斷四邊形BDEF為平行四邊形得到DE=BF,設AE=x,FB=DE=2x,BC=3x,所以AE:CF=1:5,然后證明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性質得到AH:AC的值.【詳解】解:連接BD,如圖,∵四邊形ABCD為菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四邊形BDEF為平行四邊形,∴DE=BF,由AE:FB=1:2,設AE=x,FB=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故選:B.【點睛】此題主要考查相似三角形的判定與性質,解題的關鍵是熟知菱形的性質及相似三角形的性質.12、C【解析】分析:根據同旁內角的定義進行分析判斷即可.詳解:A選項中,∠1與∠2是同位角,故此選項不符合題意;B選項中,∠1與∠2是內錯角,故此選項不符合題意;C選項中,∠1與∠2是同旁內角,故此選項符合題意;D選項中,∠1與∠2不是同旁內角,故此選項不符合題意.故選C.點睛:熟知“同旁內角的定義:在兩直線被第三直線所截形成的8個角中,夾在被截兩直線之間,且位于截線的同側的兩個角叫做同旁內角”是解答本題的關鍵.二、填空題(每題4分,共24分)13、5【分析】根據直角三角形斜邊上的中線等于斜邊的一半、等邊三角形的判定和性質解答.【詳解】解:∵在中,,,∴,∵點是斜邊的中點,∴BD=AD,∴△BCD是等邊三角形,BD=BC=5.故答案為:5.【點睛】本題考查直角三角形斜邊上的中線的性質,解題關鍵是熟練掌握直角三角形斜邊上的中線等于斜邊的一半.14、【詳解】∵拋物線與直線的兩個交點坐標分別為,∴方程組的解為,,即關于x的方程的解為.15、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的長,得出OA長,然后由勾股定理求得OB的長即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案為:4.【點睛】此題考查了平行四邊形的性質以及勾股定理.此題難度適中,注意掌握數形結合思想的應用.16、1【分析】首先理解題意,先把實際問題轉化成數學問題后,知道解此題就是求出h=30t﹣5t2的頂點坐標即可.【詳解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴圖象的開口向下,有最大值,當t=3時,h最大值=1.故答案為:1.【點睛】本題考查了二次函數的應用,解此題的關鍵是把實際問題轉化成數學問題,利用二次函數的性質就能求出結果.17、2【分析】把x=1代入已知方程,列出關于k的新方程,通過解新方程來求k的值.【詳解】∵方程x2+kx?3=0的一個根為1,∴把x=1代入,得12+k×1?3=0,解得,k=2.故答案是:2.【點睛】本題考查了一元二次方程的知識點,解題的關鍵是熟練的掌握一元二次方程解的應用.18、【分析】拋物線開口向上,則二次函數解析式的二次項系數為正數,據此寫二次函數解析式即可.【詳解】∵圖象開口向上,∴二次項系數大于零,∴可以是:(答案不唯一).故答案為:.【點睛】本題考察了二次函數的圖象和性質,對于二次函數y=ax2+bx+c(a,b,c為常數,a≠0),當a>0時,拋物線開口向上;當a<0時,拋物線開口向下.三、解答題(共78分)19、(1)y=﹣x2+﹣x+2;(2);(3)N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根據對稱軸公式列出等式,帶點到拋物線列出等式,解出即可;(2)先求出A、B、C的坐標,從而求出D的坐標算出BD的解析式,根據題意畫出圖形,設出P、G的坐標代入三角形的面積公式得出一元二次方程,聯立方程組解出即可;(3)分類討論①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),(ⅱ)當點M在y軸右側時,②當AM是正方形的對角線時,分別求出結果綜合即可.【詳解】(1)拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點B(1,0).∴,解得,∴拋物線的解析式為:y=﹣x2+﹣x+2;(2)拋物線y=﹣x2﹣x+2與x軸交于點A和點B,與y軸交于點C,∴A(﹣1,0),B(1,0),C(0,2).∵點D為線段AC的中點,∴D(﹣2,1),∴直線BD的解析式為:,過點P作y軸的平行線交直線EF于點G,如圖1,設點P(x,),則點G(x,).∴,當x=﹣時,S最大,即點P(﹣,),過點E作x軸的平行線交PG于點H,則tan∠EBA=tan∠HEG=,∴,故為最小值,即點G為所求.聯立解得,(舍去),故點E(﹣,),則PG﹣的最小值為PH=.(3)①當AM是正方形的邊時,(ⅰ)當點M在y軸左側時(N在下方),如圖2,當點M在第二象限時,過點A作y軸的平行線GH,過點M作MG⊥GH于點G,過點N作HN⊥GH于點H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,當x=時,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).當x=時,同理可得N(,),當點M在第三象限時,同理可得N(,).(ⅱ)當點M在y軸右側時,如圖3,點M在第一象限時,過點M作MH⊥x軸于點H設AH=b,同理△AHM≌△MGN(AAS),則點M(﹣1+b,b﹣).將點M的坐標代入拋物線解析式可得:b=(負值舍去)yN=yM+GM=yM+AH=,∴N(﹣,).當點M在第四象限時,同理可得N(﹣,-).②當AM是正方形的對角線時,當點M在y軸左側時,過點M作MG⊥對稱軸于點G,設對稱軸與x軸交于點H,如圖1.∵∠AHN=∠MGN=90°,∠NAH=∠MNG,MN=AN,∴△AHN≌△NGN(AAS),設點N(﹣,π),則點M(﹣,),將點M的坐標代入拋物線解析式可得,(舍去),∴N(,),當點M在y軸右側時,同理可得N(,).綜上所述:N點的坐標為:或()或(﹣)或(﹣)或(﹣)或或(﹣).【點睛】本題考查二次函數與一次函數的綜合題型,關鍵在于熟練掌握設數法,合理利用相似全等等基礎知識.20、小明、小亮兩人與氣球的距離AC為30米,BC為30(+1)米.【分析】作AD⊥BC于D,根據題意求出∠C的度數,根據銳角三角函數的概念分別求出BD、CD、AC即可.【詳解】解:作AD⊥BC于D,由題意得,∠CAE=75°,∠B=30°,∴∠C=∠CAE-∠B=45°,∵∠ADB=90°,∠B=30°,∴AD=AB=30,BD=AB?cos30°=30,∵∠ADC=90°,∠C=45°,∴∴AC=30,BC=BD+CD=30+30,答:小明、小亮兩人與氣球的距離AC為30米,BC為30(+1)米.【點睛】此題考查解直角三角形的應用-仰角俯角問題,正確理解仰角俯角的概念、熟記銳角三角函數的概念是解題的關鍵.21、(1);(2);(3)E(2,)【分析】(1)直接利用待定系數法,把A、B、C三點代入解析式,即可得到答案;(2)過點D作DH⊥BC于H,在△ABC中,設AC邊上的高為h,利用面積的比得到,然后求出DH和BH,即可得到答案;(3)延長AE至x軸,與x軸交于點F,先證明△OAB∽△OFA,求出點F的坐標,然后求出直線AF的方程,即可求出點E的坐標.【詳解】解:(1)將A(0,-3)、B(1,0)、C(3,0)代入得,解得,∴此拋物線的表達式是:.(2)過點D作DH⊥BC于H,在△ABC中,設AC邊上的高為h,則,又∵DH//y軸,∴.∵OA=OC=3,則∠ACO=45°,∴△CDH為等腰直角三角形,∴.∴.∴tan∠DBC=.(3)延長AE至x軸,與x軸交于點F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC∠BAC=45°∠BAC,∠OFA=∠OCA∠FAC=45°∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴.∴OF=9,即F(9,0);設直線AF的解析式為y=kx+b(k≠0),可得,解得,∴直線AF的解析式為:,將x=2代入直線AF的解析式得:,∴E(2,).【點睛】本題考查了相似三角形的判定和性質,二次函數的性質,求二次函數的解析式,等腰直角三角形的判定和性質,求一次函數的解析式,解題的關鍵是掌握二次函數的圖像和性質,以及正確作出輔助線構造相似三角形.22、(1)x=3,x=1;(2)x=,x=.【分析】(1)根據因式分解法即可求解;(2)根據公式法即可求解.【詳解】(1)稱項得:x2-4x+3=0∵(x-3)(x-1)=0∴x-3=0,x-1=0∴x=3,x=1(2)整理得:3x2-9x+4=0∵a=3,b=﹣9,c=4∴△=b2﹣4ac=(﹣9)2﹣4×3×4=33>0∴方程有兩個不相等的實數根為x=x=,x=.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知解解法.23、(1)①,4;②;(2),證明見解析.【分析】(1)①根據等邊三角形的性質得BA=BC,∠ABC=60°,再根據旋轉的性質得∠OBD=∠ABC=60°,于是可確定旋轉角的度數為60°;由旋轉的性質得BO=BD,加上∠OBD=60°,則可判斷△OBD為等邊三角形,所以OD=OB=4;②由△BOD為等邊三角形得到∠BDO=60°,再利用旋轉的性質得CD=AO=3,然后根據勾股定理的逆定理可證明△OCD為直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根據旋轉的性質得∠OBD=∠ABC=90°,BO=BD,CD=AO,則可判斷△OBD為等腰直角三角形,則OD=OB,然后根據勾股定理的逆定理,當CD2+OD2=OC2時,△OCD為直角三角形,∠ODC=90°.【詳解】解:(1)①∵△ABC為等邊三角形,∴BA=BC,∠ABC=60°,∵△BAO繞點B順時針旋轉后得到△BCD,∴∠OBD=∠ABC=60°,∴旋轉角的度數為60°;∵旋轉至,∴,,,∴為等邊三角形∴,,故答案為:60°;4②在中,,,,∵∴∴為直角三角形,,∴(2)時,,理由如下:∵繞點順時針旋轉后得到,∴,,,∴為等腰直角三角形,∴∵當時,為直角三角形,,∴,即∴當滿足時,.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的判斷與性質和勾股定理的逆定理.24、(Ⅰ);(Ⅱ)【分析】(Ⅰ)根據題意,直接利用概率公式求解可得;(Ⅱ)畫樹狀圖列出所有等可能結果,從中找到符合條件的結果數,再根據概率公式計算可得.【詳解】解:(Ⅰ)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為,故答案為:;(Ⅱ)畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中兩次所抽取的卡片恰好都是軸對稱圖形的有6種結果,則兩次所抽取的卡片恰好都是軸對稱圖形的概率為=.【點睛】本題考查列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.25、(1)見解析;(2);(3)菱形,24【分析】(1)由題意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蒸汽管網培訓課件
- 寫字坐姿培訓課件圖片
- 中職新生入學紀律教育
- 中國制造課件-教科版
- 培訓學習匯報
- 高齡心房顫動患者抗凝治療中國專家共識解讀 2
- 扒房知識培訓
- 中國全國各地地區課件
- 中國傳統飾品繪畫課件
- 脈管炎的中醫護理方案
- 全國二卷2025年高考數學真題含解析
- 2025年上海市中考語文試卷真題(含答案及解析)
- 護理急診急救培訓課件
- 2025年衛生系統招聘考試(公共基礎知識)新版真題卷(附詳細解析)
- 2024年司法局司法輔助崗招聘考試筆試試題(含答案)
- 2025邯鄲武安市選聘農村黨務(村務)工作者180名筆試備考試題及答案詳解一套
- 重慶市普通高中2025屆高一下化學期末學業質量監測試題含解析
- 2025年人力資源管理師考試試卷及答案
- 北方華創招聘筆試題庫2025
- 2025鄭州航空工業管理學院輔導員考試試題及答案
- 浙江省嘉興市2023-2024學年高一下學期6月期末考試英語試題(含答案)
評論
0/150
提交評論