貴州省貴陽市普通中學(xué)2022-2023學(xué)年高二上學(xué)期期末監(jiān)測考試數(shù)學(xué)試題(含答案詳解)_第1頁
貴州省貴陽市普通中學(xué)2022-2023學(xué)年高二上學(xué)期期末監(jiān)測考試數(shù)學(xué)試題(含答案詳解)_第2頁
貴州省貴陽市普通中學(xué)2022-2023學(xué)年高二上學(xué)期期末監(jiān)測考試數(shù)學(xué)試題(含答案詳解)_第3頁
貴州省貴陽市普通中學(xué)2022-2023學(xué)年高二上學(xué)期期末監(jiān)測考試數(shù)學(xué)試題(含答案詳解)_第4頁
貴州省貴陽市普通中學(xué)2022-2023學(xué)年高二上學(xué)期期末監(jiān)測考試數(shù)學(xué)試題(含答案詳解)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

貴陽市普通中學(xué)2022-2023學(xué)年度第一學(xué)期期末監(jiān)測考試試卷高二數(shù)學(xué)2023.1一?選擇題(本大題共8小題,每小題4分,共32分.每小題有四個(gè)選項(xiàng),其中只有一個(gè)選項(xiàng)正確,請(qǐng)將你認(rèn)為正確的選項(xiàng)填在答題卷的相應(yīng)位置上.)1.已知兩個(gè)空間向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)m的值為()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)空間向量平行的坐標(biāo)運(yùn)算得出答案.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故選:D.2.在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=()A.SKIPIF1<0 B.1 C.1或SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)等比數(shù)列基本量的計(jì)算即可求解.【詳解】設(shè)公比為SKIPIF1<0則由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,故選:B3.已知直線l:SKIPIF1<0,如果SKIPIF1<0,SKIPIF1<0,那么直線l不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解析】【分析】根據(jù)題意,求出直線在坐標(biāo)軸上的截距,即可求解.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即點(diǎn)SKIPIF1<0在y軸的正半軸;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即點(diǎn)SKIPIF1<0在x軸的正半軸,又直線SKIPIF1<0過點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0不經(jīng)過第三象限.故選:C.4.以下四個(gè)命題,正確的是()A.若直線l的斜率為1,則其傾斜角為45°或135°B.經(jīng)過SKIPIF1<0兩點(diǎn)的直線的傾斜角為銳角C.若直線的傾斜角存在,則必有斜率與之對(duì)應(yīng)D.若直線的斜率存在,則必有傾斜角與之對(duì)應(yīng)【答案】D【解析】【分析】根據(jù)直線的傾斜角和斜率的概念依次判斷選項(xiàng)即可.【詳解】A:直線的斜率為1,則直線的傾斜角為SKIPIF1<0,故A錯(cuò)誤;B:過點(diǎn)A、B的直線的斜率為SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0為直線的傾斜角),則SKIPIF1<0為鈍角,故B錯(cuò)誤;C:當(dāng)直線的傾斜角為SKIPIF1<0時(shí),該直線的斜率不存在,故C錯(cuò)誤;D:若直線的斜率存在,則必存在對(duì)應(yīng)的傾斜角,故D正確.故選:D.5.如圖,在三棱柱SKIPIF1<0中,M,N分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn),且SKIPIF1<0,則實(shí)數(shù)x,y,z的值分別為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)題意用空間基底向量表示向量,結(jié)合空間向量的線性運(yùn)算求解.【詳解】由題意可得:SKIPIF1<0,故SKIPIF1<0.故選:A.6.等差數(shù)列SKIPIF1<0的前n項(xiàng)和記為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=()A.70 B.90 C.100 D.120【答案】D【解析】【分析】根據(jù)等差數(shù)列前n項(xiàng)和的性質(zhì)可得SKIPIF1<0成等差數(shù)列,即可求得SKIPIF1<0的值.【詳解】在等差數(shù)列SKIPIF1<0中,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.故選:D.7.設(shè)SKIPIF1<0,SKIPIF1<0分別是雙曲線C:SKIPIF1<0的左?右焦點(diǎn),P為C上一點(diǎn)且在第一象限若SKIPIF1<0,則點(diǎn)P的縱坐標(biāo)為()A1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)雙曲線的定義可得SKIPIF1<0,進(jìn)而根據(jù)長度關(guān)系判斷SKIPIF1<0,代入SKIPIF1<0即可求解.【詳解】根據(jù)題意可知:SKIPIF1<0,由SKIPIF1<0以及SKIPIF1<0可得SKIPIF1<0,又SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,即三角形SKIPIF1<0為直角三角形,將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,由于P為C在第一象限,故點(diǎn)P的縱坐標(biāo)為2,故選:C8.已知直線l:SKIPIF1<0是圓C:SKIPIF1<0的對(duì)稱軸,過點(diǎn)SKIPIF1<0作圓的一條切線,切點(diǎn)為A,則SKIPIF1<0()A.SKIPIF1<0 B.7 C.SKIPIF1<0 D.2【答案】B【解析】【分析】根據(jù)題意分析可得直線l過圓心SKIPIF1<0,可求得SKIPIF1<0,再根據(jù)圓的切線長公式運(yùn)算求解.【詳解】由題意可知:直線l:SKIPIF1<0過圓心SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故圓C:SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,且點(diǎn)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.故選:B.二?多項(xiàng)選擇題(本題共2小題,每小題4分,在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選時(shí)得4分,部分選對(duì)得2分,有選錯(cuò)得0分.)9.斐波那刻螺旋線被骨為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵,鸚鵡螺等.如圖,小正方形的邊長分別為斐波那契數(shù)1,1,2,3,5,8....,從內(nèi)到外依次連接通過小正方形的SKIPIF1<0圓弧,就得到了一條被稱為“斐波那契螺旋”的弧線,現(xiàn)將每一段“斐波那契螺旋”弧線所在的正方形邊長設(shè)為SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,每一段“斐波那契螺旋”弧線與其所在的正方形圍成的扇形面積設(shè)為SKIPIF1<0,則下列說法正確的有()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】【分析】由題意可得SKIPIF1<0的前9項(xiàng)分別為SKIPIF1<0,根據(jù)運(yùn)算即可判斷AB,根據(jù)SKIPIF1<0,利用平方差公式以及SKIPIF1<0即可判斷選項(xiàng)C,代入計(jì)算即可判斷D.【詳解】根據(jù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得數(shù)列的前9項(xiàng)分別為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故A正確,B錯(cuò)誤,由題意可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故C正確,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D錯(cuò)誤,故選:AC.10.如圖,在正方線ABCD-A1B1C1D1中,E,F(xiàn),G,H,K,L分別是AB,BB1,B1C1,C1D1,D1D1,DA各棱的中點(diǎn),則下列選項(xiàng)正確的有()A.向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面 B.A1C⊥平面EFGHKLC.BC與平面EFGHKL所成角的正弦值為SKIPIF1<0 D.∠KEF=90°【答案】BCD【解析】【分析】建系,利用空間向量判斷向量共面和線、面關(guān)系以及求線面夾角.【詳解】如圖,以SKIPIF1<0為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,對(duì)A:若向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面,則存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,∵SKIPIF1<0,可得SKIPIF1<0,無解,∴不存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,故向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不共面,A錯(cuò)誤;對(duì)B:由題意可得:SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,同理可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0六點(diǎn)共面,∵SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,B正確;對(duì)C:由B可得SKIPIF1<0是平面SKIPIF1<0的法向量,∵SKIPIF1<0,∴BC與平面EFGHKL所成角的正弦值為SKIPIF1<0,C正確;對(duì)D:∵SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,D正確.故選:BCD.【點(diǎn)睛】方法點(diǎn)睛:利用空間向量處理立體幾何問題的一般步驟:(1)建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)求出相關(guān)點(diǎn)的坐標(biāo),寫出相關(guān)向量的坐標(biāo);(3)結(jié)合公式進(jìn)行論證、計(jì)算;(4)轉(zhuǎn)化為幾何結(jié)論.三?填空題(本大題共5小題,每小題4分,共20分,請(qǐng)將你認(rèn)為正確的答案填在答題卷的相應(yīng)位置上.)11.直線l1:SKIPIF1<0與直線l2:SKIPIF1<0間的距離是___________.【答案】SKIPIF1<0【解析】【分析】根據(jù)兩平行線間距離公式運(yùn)算求解.【詳解】由題意可得:直線l1:SKIPIF1<0與直線l2:SKIPIF1<0間的距離SKIPIF1<0.故答案為:SKIPIF1<0.12.已知空間向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.【答案】6【解析】【分析】利用空間向量數(shù)量積運(yùn)算法則計(jì)算即可.【詳解】SKIPIF1<0.故答案為:613.已知a,b,c成等比數(shù)列,則二次函數(shù)SKIPIF1<0的圖像與x軸的交點(diǎn)個(gè)數(shù)是___________.【答案】1【解析】【分析】根據(jù)題意有SKIPIF1<0,再借助二次函數(shù)的判別式判斷交點(diǎn)個(gè)數(shù)【詳解】a,b,c成等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,則二次函數(shù)的圖像與x軸有1個(gè)交點(diǎn),故答案為:1.14.已知拋物線SKIPIF1<0的準(zhǔn)線是直線SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點(diǎn),SKIPIF1<0,垂足為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【解析】【分析】由拋物線的定義可得出SKIPIF1<0,當(dāng)SKIPIF1<0為線段SKIPIF1<0與拋物線SKIPIF1<0的交點(diǎn)時(shí),SKIPIF1<0取最小值可得結(jié)果.【詳解】拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,如圖所示:由拋物線的定義可得SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0為線段SKIPIF1<0與拋物線SKIPIF1<0的交點(diǎn)時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故答案:SKIPIF1<0.15.若直線SKIPIF1<0與曲線SKIPIF1<0有公共點(diǎn),則b的取值范圍是___________.【答案】SKIPIF1<0【解析】【分析】由題意可得:該曲線為以SKIPIF1<0為圓心,半徑SKIPIF1<0的右半圓,根據(jù)圖象結(jié)合直線與圓的位置關(guān)系運(yùn)算求解.【詳解】∵SKIPIF1<0,整理得SKIPIF1<0,∴該曲線為以SKIPIF1<0為圓心,半徑SKIPIF1<0的右半圓,直線SKIPIF1<0的斜率SKIPIF1<0,如圖所示:當(dāng)直線SKIPIF1<0與圓相切時(shí),則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去);當(dāng)直線SKIPIF1<0過點(diǎn)SKIPIF1<0時(shí),則SKIPIF1<0,解得SKIPIF1<0;綜上所述:b的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:直線與圓位置關(guān)系問題的求解思路:研究直線與圓的位置關(guān)系主要通過圓心到直線的距離和半徑的比較實(shí)現(xiàn),結(jié)合圖象分析相應(yīng)的性質(zhì)與關(guān)系,列式求解.四?解答題(本大題共4小題,每小題8分,共32分.解答應(yīng)寫出文字說明,證明過程或演算步驟.16.如圖,四棱柱SKIPIF1<0的底面是菱形,SKIPIF1<0⊥底面ABCD,AB=BD=2,SKIPIF1<0,E,F(xiàn)分別是棱BB1,DD1上的動(dòng)點(diǎn)(不含端點(diǎn)),且SKIPIF1<0.(1)求四棱錐SKIPIF1<0的體積;(2)當(dāng)BE=1時(shí),求平面AEF與平面SKIPIF1<0夾角的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)作出輔助線,得到AO是四棱錐SKIPIF1<0的高,求出各邊的長,利用錐體體積公式求出答案;(2)建立空間直角坐標(biāo)系,利用空間向量求解兩平面的夾角的余弦值.【小問1詳解】如圖,連接AC交BD于點(diǎn)O,因?yàn)榈酌鍭BCD是菱形,所以SKIPIF1<0,因?yàn)辄c(diǎn)E,F(xiàn)分別在SKIPIF1<0,SKIPIF1<0上,所以SKIPIF1<0SKIPIF1<0BESKIPIF1<0DF,又SKIPIF1<0⊥底面ABCD,AOSKIPIF1<0底面ABCD,BDSKIPIF1<0底面ABCD,所以BE⊥BD,BE⊥AO,所以四邊形BEFD是直角梯形,且因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0平面BEFD,所以AO⊥平面BEFD,即AO是四棱錐SKIPIF1<0的高,因?yàn)锳B=BD=2,底面ABCD是菱形,所以SKIPIF1<0是等邊三角形,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以四棱錐SKIPIF1<0的體積為SKIPIF1<0【小問2詳解】以O(shè)為原點(diǎn),分別以O(shè)A,OB所在直線為x軸,y軸,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0是平面AEF的法向量,則SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.所以,SKIPIF1<0是平面AEF的一個(gè)法向量,由(1)可知,OA⊥平面BEFD,即OA⊥平面SKIPIF1<0,所以SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量,而SKIPIF1<0,所以平面AEF與平面SKIPIF1<0夾角的余弦值為SKIPIF1<017.設(shè)直線SKIPIF1<0與拋物線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0.(1)求拋物線方程;(2)求SKIPIF1<0面積的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)聯(lián)立直線與拋物線方程,消元得出韋達(dá)定理,將SKIPIF1<0表示為坐標(biāo)形式,列方程化簡計(jì)算,可得拋物線方程;(2)利用三角形的面積公式,結(jié)合韋達(dá)定理,根據(jù)SKIPIF1<0的取值,得出面積的最小值.【小問1詳解】設(shè)直線與拋物線交于點(diǎn)SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,顯然SKIPIF1<0,所以SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0,代入得SKIPIF1<0解得SKIPIF1<0,所以拋物線方程為SKIPIF1<0【小問2詳解】因?yàn)橹本€SKIPIF1<0過定點(diǎn)SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積取得最小值為SKIPIF1<018.已知圓O:SKIPIF1<0,過定點(diǎn)SKIPIF1<0作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0交圓O于SKIPIF1<0兩點(diǎn),SKIPIF1<0交圓O于SKIPIF1<0兩點(diǎn).(1)若SKIPIF1<0,求直線SKIPIF1<0的方程;(2)求證:SKIPIF1<0為定值.【答案】(1)SKIPIF1<0(2)證明見解析【解析】【分析】(1)根據(jù)題意分析可得SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,討論直線的斜率是否存在,結(jié)合點(diǎn)到直線的距離運(yùn)算求解;(2)討論直線是否與坐標(biāo)軸垂直,結(jié)合韋達(dá)定理證明結(jié)論.【小問1詳解】由題設(shè)可知圓O的圓心為SKIPIF1<0,半徑為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,則有:當(dāng)直線SKIPIF1<0的斜率不存在時(shí),則SKIPIF1<0,此時(shí)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,不合題意;當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.【小問2詳解】∵SKIPIF1<0,即定點(diǎn)SKIPIF1<0在圓SKIPIF1<0內(nèi),∴直線SKIPIF1<0與圓SKIPIF1<0均相交,當(dāng)直線SKIPIF1<0與x軸垂直時(shí),直線SKIPIF1<0與x軸平行,此時(shí)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;當(dāng)直線SKIPIF1<0與x軸垂直時(shí),直線SKIPIF1<0與x軸平行,此時(shí)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;當(dāng)直線SKIPIF1<0與不坐標(biāo)軸垂直時(shí),設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去y得SKIPIF1<0,所以SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0,綜上所述:SKIPIF1<0為定值2.19.設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,試猜想SKIPIF1<0的通項(xiàng)公式,并證明;(2)求數(shù)列SKIPIF1<0的前n項(xiàng)和.【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,證明見解析(2)SKIPIF1<0【解析】【分析】(1)根據(jù)已知求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,猜想數(shù)列SKIPIF1<0通項(xiàng)公式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合已知式子兩式相減即可得出當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,再驗(yàn)證SKIPIF1<0成立即可;(2)結(jié)合第一問結(jié)論得出數(shù)列SKIPIF1<0的通項(xiàng),利用錯(cuò)位相減法得出答案.【小問1詳解】因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0,所以猜想數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,證明如下:由題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),上式為SKIPIF1<0,這就是說,當(dāng)SKIPIF1<0時(shí),上式也成立.因此,數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0;【小問2詳解】由(1)知SKIPIF1<0,記SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.20.閱讀材料:(一)極點(diǎn)與極線的代數(shù)定義;已知圓錐曲線G:SKIPIF1<0,則稱點(diǎn)P(SKIPIF1<0,SKIPIF1<0)和直線l:SKIPIF1<0是圓錐曲線G的一對(duì)極點(diǎn)和極線.事實(shí)上,在圓錐曲線方程中,以SKIPIF1<0替換SKIPIF1<0,以SKIPIF1<0替換x(另一變量y也是如此),即可得到點(diǎn)P(SKIPIF1<0,SKIPIF1<0)對(duì)應(yīng)的極線方程.特別地,對(duì)于橢圓SKIPIF1<0,與點(diǎn)P(SKIPIF1<0,SKIPIF1<0)對(duì)應(yīng)的極線方程為SKIPIF1<0;對(duì)于雙曲線SKIPIF1<0,與點(diǎn)P(SKIPIF1<0,SKIPIF1<0)對(duì)應(yīng)的極線方程為SKIPIF1<0;對(duì)于拋物線SKIPIF1<0,與點(diǎn)P(SKIPIF1<0,SKIPIF1<0)對(duì)應(yīng)的極線方程為SKIPIF1<0.即對(duì)于確定的圓錐曲線,每一對(duì)極點(diǎn)與極線是一一對(duì)應(yīng)的關(guān)系.(二)極點(diǎn)與極線的基本性質(zhì)?定理①當(dāng)P在圓錐曲線G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論