




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年黑龍江省安達市四平中學九年級數學第一學期期末學業水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在一個不透明的袋子里裝有6個顏色不同的球(除顏色不同外,質地、大小均相同),其中個球為紅球,個球為白球,若從該袋子里任意摸出1個球,則摸出的球是白球的概率為()A. B. C. D.2.如果、是一元二次方程的兩根,則的值是()A.3 B.4 C.5 D.63.如圖,△ABC中,DE∥BC,則下列等式中不成立的是()A. B. C. D.4.如圖,將△AOB繞點O按逆時針方向旋轉45°后得到△A'OB',若∠AOB=15°,則∠AOB'的度數是()A.25° B.30° C.35° D.40°5.如圖,是的直徑,弦于點,如果,,那么線段的長為()A.6 B.8 C.10 D.126.已知正六邊形的邊心距是,則正六邊形的邊長是()A. B. C. D.7.在一個不透明的盒子中裝有2個白球,若干個黃球,它們除了顏色不同外,其余均相同.若從中隨機摸出一個白球的概率是,則黃球的個數為()A.2 B.3 C.4 D.68.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-39.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.10.如圖1,在Rt△ABC中,∠B=90°,∠ACB=45°,延長BC到D,使CD=AC,則tan22.5°=()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).12.一枚質地均勻的正方體骰子,其六個面上分別刻有1、2、3、4、5、6六個數字,投擲這個骰子一次,則向上一面的數字小于3的概率是__________.13.的半徑為4,圓心到直線的距離為2,則直線與的位置關系是______.14.如圖,圓是銳角的外接圓,是弧的中點,交于點,的平分線交于點,過點的切線交的延長線于點,連接,則有下列結論:①點是的重心;②;③;④,其中正確結論的序號是__________.15.如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=8,DF=3FC,則BC=__________.16.在△ABC中,分別以AB,AC為斜邊作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,連接DE.若DE=5,則BC長為_____.17.計算:sin30°+tan45°=_____.18.方程(x﹣1)(x+2)=0的解是______.三、解答題(共66分)19.(10分)在平面直角坐標系xOy中,拋物線y=ax2+bx+c的開口向上,與x軸相交于A、B兩點(點A在點B的右側),點A的坐標為(m,0),且AB=1.(1)填空:點B的坐標為(用含m的代數式表示);(2)把射線AB繞點A按順時針方向旋轉135°與拋物線交于點P,△ABP的面積為8:①求拋物線的解析式(用含m的代數式表示);②當0≤x≤1,拋物線上的點到x軸距離的最大值為時,求m的值.20.(6分)如圖所示,已知在平面直角坐標系中,拋物線(其中、為常數,且)與軸交于點,它的坐標是,與軸交于點,此拋物線頂點到軸的距離為4.(1)求拋物線的表達式;(2)求的正切值;(3)如果點是拋物線上的一點,且,試直接寫出點的坐標.21.(6分)如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.(1)求證:直線BF是⊙O的切線;(2)若OB=2,求BD的長.22.(8分)先化簡,再求值:,其中.23.(8分)(1)解方程:x2+4x-1=0(2)已知α為銳角,若,求的度數.24.(8分)今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經試銷發現,銷售量y(千克)與銷售單價x(元)符合一次函數關系,如圖是y與x的函數關系圖象.(1)求y與x的函數解析式(也稱關系式),請直接寫出x的取值范圍;(2)設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.25.(10分)如圖所示,雙曲線與直線(為常數)交于,兩點.(1)求雙曲線的表達式;(2)根據圖象觀察,當時,求的取值范圍;(3)求的面積.26.(10分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉一定的角度得到△AED,點B、C的對應點分別是E、D.(1)如圖1,當點E恰好在AC上時,求∠CDE的度數;(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】讓白球的個數除以球的總個數即為所求的概率.【詳解】解:因為一共有6個球,白球有4個,
所以從布袋里任意摸出1個球,摸到白球的概率為:.
故選:D.【點睛】本題考查了概率公式,用到的知識點為:概率等于所求情況數與總情況數之比.2、B【解析】先求得函數的兩根,再將兩根帶入后面的式子即可得出答案.【詳解】由韋達定理可得α+β=-3,又=3--=)=1+3=4,所以答案選擇B項.【點睛】本題考察了二次方程的求根以及根的意義和根與系數的關系,根據得到的等量關系是解決本題的關鍵.3、B【分析】根據兩直線平行,對應線段成比例即可解答.【詳解】∵DE∥BC,∴△ADE∽△ABC,=,∴,∴選項A,C,D成立,故選:B.【點睛】本題考查平行線分線段成比例的知識,解題的關鍵是熟練掌握平行線分線段成比例定理.4、B【詳解】∵將△AOB繞點O按逆時針方向旋轉45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故選B.5、A【分析】連接OD,由直徑AB與弦CD垂直,根據垂徑定理得到E為CD的中點,由CD的長求出DE的長,又由直徑的長求出半徑OD的長,在直角三角形ODE中,由DE及OD的長,利用勾股定理即可求出OE的長.【詳解】解:如圖所示,連接OD.
∵弦CD⊥AB,AB為圓O的直徑,
∴E為CD的中點,
又∵CD=16,
∴CE=DE=CD=8,
又∵OD=AB=10,
∵CD⊥AB,∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根據勾股定理得:OE==6,
則OE的長度為6,
故選:A.【點睛】本題主要考查了垂徑定理,勾股定理,解答此類題常常利用垂徑定理由垂直得中點,進而由弦長的一半,弦心距及圓的半徑構造直角三角形,利用勾股定理是解答此題的關鍵.6、A【分析】如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB,然后求出正六邊形的中心角,證出△OAB為等邊三角形,然后利用等邊三角形的性質和銳角三角函數即可求出結論.【詳解】解:如圖所示:正六邊形ABCDEF中,OM為邊心距,OM=,連接OA、OB正六邊形的中心角∠AOB=360°÷6=60°∴△OAB為等邊三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六邊形的邊長是.故選A.【點睛】此題考查的是根據正六邊形的邊心距求邊長,掌握中心角的定義、等邊三角形的判定及性質和銳角三角函數是解決此題的關鍵.7、C【解析】試題分析:設黃球的個數為x個,根據題意得:=,解得:x=1,經檢驗:x=1是原分式方程的解;∴黃球的個數為1.故選C.考點:概率公式.8、D【解析】先移項,然后利用因式分解法求解.【詳解】解:(1)x2=-1x,
x2+1x=0,
x(x+1)=0,
解得:x1=0,x2=-1.
故選:D.【點睛】本題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解題的關鍵.9、B【分析】根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.10、B【解析】設AB=x,求出BC=x,CD=AC=x,求出BD為(x+x),通過∠ACB=45°,CD=AC,可以知道∠D即為22.5°,再解直角三角形求出tanD即可.【詳解】解:設AB=x,
∵在Rt△ABC中,∠B=90°,∠ACB=45°,
∴∠BAC=∠ACB=45°,
∴AB=BC=x,
由勾股定理得:AC==x,∴AC=CD=x∴BD=BC+CD=x+x,
∴tan22.5°=tanD==故選B.【點睛】本題考查了解直角三角形、勾股定理、等腰三角形的性質和判定等知識點,設出AB=x能求出BD=x+x是解此題的關鍵.二、填空題(每小題3分,共24分)11、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數的幾何意義得出各線段的比例關系,從而得出答案.12、【分析】利用公式直接計算.【詳解】解:這六個數字中小于3的有1和2兩種情況,則P(向上一面的數字小于3)=.故答案為:【點睛】本題考查概率的計算.13、相交【分析】由圓的半徑為4,圓心O到直線l的距離為2,利用直線和圓的位置關系,圓的半徑大于直線到圓距離,則直線l與O的位置關系是相交.【詳解】解:∵⊙O的半徑為4,圓心O到直線L的距離為2,
∵4>2,即:d<r,
∴直線L與⊙O的位置關系是相交.
故答案為:相交.【點睛】本題考查知道知識點是圓與直線的位置關系,若d<r,則直線與圓相交;若d>r,則直線與圓相離;若d=r,則直線與圓相切.14、②④【分析】根據三角形重心的定義,即可判斷①;連接OD,根據垂徑定理和切線的性質定理,即可判斷②;由∠ACD=∠BAD,∠CAF=∠BAF,得∠AFD=∠FAD,若,可得∠EAF=∠ADF=∠BAC,進而得,即可判斷③;易證?ACD~?EAD,從而得,結合DF=DA,即可判斷④.【詳解】∵是弧的中點,∴∠ACD=∠BCD,即:CD是∠ACB的平分線,又∵AF是的平分線,∴點F不是的重心,∴①不符合題意,連接OD,∵是弧的中點,∴OD⊥AB,∵PD與圓相切,∴OD⊥PD,∴,∴②符合題意,∵是弧的中點,∴∠ACD=∠BAD,∵AF是的平分線,∴∠CAF=∠BAF,∴∠CAF+∠ACD=∠BAF+∠BAD,即:∠AFD=∠FAD,若,則∠AFD=∠AEF,∴∠AFD=∠AEF=∠FAD,∴∠EAF=∠ADF=∠BAC,∴.即:只有當時,才有.∴③不符合題意,∵∠ACD=∠BAD,∠D=∠D,∴?ACD~?EAD,∴,又∵∠AFD=∠FAD,∴DF=DA,∴,∴④符合題意.故答案是:②④.【點睛】本題主要考查圓的性質與相似三角形的綜合,掌握垂徑定理,圓周角定理以及相似三角形的判定與性質定理,是解題的關鍵.15、6+1.【分析】先延長EF和BC,交于點G,再根據條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據條件判斷三角形BEG為等腰三角形,最后根據△EFD∽△GFC得出比例式,DF=3FC計算得出CG與DE的倍數關系,并根據BG=BC+CG進行計算即可.【詳解】解:延長EF和BC,交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,設CG=x,DE=3x,則AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案為:6+1.【點睛】本題主要考查矩形的性質、相似三角形性質和判定以及等腰三角形的性質,解決問題的關鍵是得出BG=BE,從而進行計算.16、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可證得△ABD∽△ACE,AD=AB,繼而可證得△ABC∽△ADE,然后由相似三角形的對應邊成比例,求得答案.【詳解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案為:1.【點睛】此題考查了相似三角形的判定與性質以及含30度角的直角三角形.此題難度適中,注意掌握數形結合思想的應用.17、【詳解】解:sin30°+tan45°=【點睛】此題主要考察學生對特殊角的三角函數值的記憶30°、45°、60°角的各個三角函數值,必須正確、熟練地進行記憶.18、1、﹣1【分析】試題分析:根據幾個式子的積為0,則至少有一個式子為0,即可求得方程的根.【詳解】(x﹣1)(x+1)=0x-1=0或x+1=0解得x=1或-1.考點:解一元二次方程點評:本題屬于基礎應用題,只需學生熟練掌握解一元二次方程的方法,即可完成.三、解答題(共66分)19、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值為:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐標為(m,0),AB=1,則點B坐標為(m-1,0);(3)①S△ABP=?AB?yP=3yP=8,即:yP=1,求出點P的坐標為(1+m,1),即可求解;②拋物線對稱軸為x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三種情況,討論求解.【詳解】解:(1)A的坐標為(m,0),AB=1,則點B坐標為(m﹣1,0),故答案為(m﹣1,0);(3)①S△ABP=AB?yP=3yP=8,∴yP=1,把射線AB繞點A按順時針方向旋轉135°與拋物線交于點P,此時,直線AP表達式中的k值為1,設:直線AP的表達式為:y=x+b,把點A坐標代入上式得:m+b=0,即:b=﹣m,則直線AP的表達式為:y=x﹣m,則點P的坐標為(1+m,1),則拋物線的表達式為:y=a(x﹣m)(x﹣m+1),把點P坐標代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,則拋物線表達式為:y=(x﹣m)(x﹣m+1),②拋物線的對稱軸為:x=m﹣3,當x=m﹣3≥1(即:m≥3)時,x=0時,拋物線上的點到x軸距離為最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;當0≤x=m﹣3≤1(即:3≤m≤3)時,在頂點處,拋物線上的點到x軸距離為最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合條件,故:3≤m≤3;當x=m﹣3≤0(即:m≤3)時,x=1時,拋物線上的點到x軸距離為最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;綜上所述,m的值為:3+3或3﹣3或3≤m≤3.【點睛】本題考查的是二次函數知識的綜合運用,涉及到圖象旋轉、一次函數基本知識等相關內容,其中(3)中,討論拋物線對稱軸所處的位置與0,1的關系是本題的難點.20、(1);(2);(2)點的坐標是或【分析】(1)先求得拋物線的對稱軸方程,然后再求得點C的坐標,設拋物線的解析式為y=a(x+1)2+4,將點(-2,0)代入求得a的值即可;
(2)先求得A、B、C的坐標,然后依據兩點間的距離公式可得到BC、AB、AC的長,然后依據勾股定理的逆定理可證明∠ABC=90°,最后,依據銳角三角函數的定義求解即可;
(2)記拋物線與x軸的另一個交點為D.先求得D(1,0),然后再證明∠DBO=∠CAB,從而可證明∠CAO=ABD,故此當點P與點D重合時,∠ABP=∠CAO;當點P在AB的上時.過點P作PE∥AO,過點B作BF∥AO,則PE∥BF.先證明∠EPB=∠CAB,則tan∠EPB=,設BE=t,則PE=2t,P(-2t,2+t),將P(-2t,2+t)代入拋物線的解析式可求得t的值,從而可得到點P的坐標.【詳解】解:(1)拋物線的對稱軸為x=-=-1.
∵a<0,
∴拋物線開口向下.
又∵拋物線與x軸有交點,
∴C在x軸的上方,
∴拋物線的頂點坐標為(-1,4).
設拋物線的解析式為y=a(x+1)2+4,將點(-2,0)代入得:4a+4=0,解得:a=-1,
∴拋物線的解析式為y=-x2-2x+2.
(2)將x=0代入拋物線的解析式得:y=2,
∴B(0,2).
∵C(-1,4)、B(0,2)、A(-2,0),
∴BC=,AB=2,AC=2,
∴BC2+AB2=AC2,
∴∠ABC=90°.
∴.即的正切值等于.
(2)如圖1所示:記拋物線與x軸的另一個交點為D.
∵點D與點A關于x=-1對稱,
∴D(1,0).
∴tan∠DBO=.
又∵由(2)可知:tan∠CAB=.
∴∠DBO=∠CAB.
又∵OB=OA=2,
∴∠BAO=∠ABO.
∴∠CAO=∠ABD.
∴當點P與點D重合時,∠ABP=∠CAO,
∴P(1,0).
如圖2所示:當點P在AB的上時.過點P作PE∥AO,過點B作BF∥AO,則PE∥BF.
∵BF∥AO,
∴∠BAO=∠FBA.
又∵∠CAO=∠ABP,
∴∠PBF=∠CAB.
又∵PE∥BF,
∴∠EPB=∠PBF,
∴∠EPB=∠CAB.
∴tan∠EPB=.
設BE=t,則PE=2t,P(-2t,2+t).
將P(-2t,2+t)代入拋物線的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.
∴P(-,).
綜上所述,點P的坐標為P(1,0)或P(-,).【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求二次函數的解析式、勾股定理的逆定理、等腰直角三角形的性質、銳角三角函數的定義,用含t的式子表示點P的坐標是解題的關鍵.21、(1)證明見解析;(2)BD=.【分析】(1)連接OC,由已知可得∠BOC=90°,根據SAS證明△OCE≌△BFE,根據全等三角形的對應角相等可得∠OBF=∠COE=90°,繼而可證明直線BF是⊙O的切線;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的長,然后由S△ABF=,即可求出BD=.【詳解】解:(1)連接OC,∵AB是⊙O的直徑,,∴∠BOC=90°,∵E是OB的中點,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直線BF是⊙O的切線;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【點睛】本題考查了切線的判定、全等三角形的判定與性質、勾股定理、三角形面積的不同表示方法,熟練掌握相關的性質與定理是解題的關鍵.22、原式=.【分析】先把分式進行化簡,得到最簡代數式,然后根據特殊角的三角函數值,求出x的值,把x代入計算,即可得到答案.【詳解】解:原式;當時,原式.【點睛】本題考查了特殊值的三角函數值,分式的化簡求值,以及分式的加減混合運算,解題的關鍵是熟練掌握運算法則進行運算.23、(1),;(2)75°.【分析】(1)用公式法即可求解;(2)根據特殊角的三角函數求解即可.【詳解】(1)∵,∴,∴,,(2)∵,∴,∴.【點睛】本題考查了利用公式法解一元二次方程和利用特殊角的三角函數值求角的度值,熟記特殊角的三角函數值是解題的關鍵.24、(1)y=﹣2x+340(20≤x≤40);(2)5200【解析】試題分析:(1)待定系數法求解可得;(2)根據:總利潤=每千克利潤×銷售量,列出函數關系式,配方后根據x的取值范圍可得W的最大值.試題解析:(1)設y與x的函數關系式為y=kx+b,根據題意,得:,解得:,∴y與x的函數解析式為y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴當x≤95時,W隨x的增大而增大,∵20≤x≤40,∴當x=40時,W最大,最大值為﹣2(40﹣95)2+11250=5200元.考點:二次函數的應用25、(1);(2)或;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇教版五年級科學與社會實踐結合計劃
- 民族團結教育知識競賽活動計劃
- 離職合同范本
- 2025年新入職工職前安全培訓考試試題帶答案(輕巧奪冠)
- 2025廠級職工安全培訓考試試題及答案突破訓練
- 2025年廠級員工安全培訓考試試題及答案下載
- 小學藝術教育資源室建設方案
- 2025企業安全培訓考試試題附解析答案
- 2025工廠職工安全培訓考試試題答案匯編
- 2024-2025工廠員工安全培訓考試試題含答案(新)
- 復旦大學附屬眼耳鼻喉醫院耳鼻喉進修匯報
- DB33-1036-2021《公共建筑節能設計標準》
- 巖芯鑒定手冊
- 快速排序算法高校試講PPT
- 甘肅歷史與甘肅文化
- 工程勘察設計收費標準
- SAP航空行業數字化轉型解決方案(優秀方案集)
- 江蘇工業企業較大以上風險目錄
- 《村衛生室管理辦法(試行)》課件(PPT 49頁)
- 監理質量評估報告(主體分部)
- 鍋爐爆炸事故演練方案(模板)
評論
0/150
提交評論