




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年河南省商水縣聯考九年級數學第一學期期末統考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.反比例函數的圖象如圖所示,以下結論:①常數m<-1;②在每個象限內,y隨x的增大而增大;③若A(-1,h),B(2,k)在圖象上,則h<k;④若P(x,y)在圖象上,則P′(-x,-y)也在圖象上.其中正確的是A.①② B.②③ C.③④ D.①④2.下列圖形中不是中心對稱圖形的是()A. B. C. D.3.如圖,在平面直角坐標系中,與軸相切,直線被截得的弦長為,若點的坐標為,則的值為()A. B. C. D.4.觀察下列圖形,是中心對稱圖形的是()A. B. C. D.5.下列圖形的主視圖與左視圖不相同的是()A. B. C. D.6.如圖,P1、P2、P3是雙曲線上的三點,過這三點分別作y軸的垂線,得到三個三角形,它們分別是△P1A1O、△P2A2O、△P3A30,設它們的面積分別是S1、S2、S3,則()A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S1=S2=S37.二次函數y=-2(x+1)2+3的圖象的頂點坐標是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)8.下列說法正確的是()A.投擲一枚質地均勻的硬幣次,正面向上的次數一定是次B.某種彩票的中獎率是,說明每買張彩票,一定有張中獎C.籃球隊員在罰球線上投籃一次,“投中”為隨機事件D.“任意畫一個三角形,其內角和為”是隨機事件9.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,10.如圖,將一個Rt△ABC形狀的楔子從木樁的底端點P處沿水平方向打入木樁底下,使木樁向上運動,已知楔子斜面的傾斜角為20°,若楔子沿水平方向前移8cm(如箭頭所示),則木樁上升了()A.8tan20° B. C.8sin20° D.8cos20°二、填空題(每小題3分,共24分)11.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.12.如圖,AB是半圓O的直徑,D是半圓O上一點,C是的中點,連結AC交BD于點E,連結AD,若BE=4DE,CE=6,則AB的長為_____.13.把拋物線y=2x2向上平移3個單位,得到的拋物線的解析式為_______________.14.對于實數a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.15.一種藥品原價每盒25元,兩次降價后每盒16元.設兩次降價的百分率都為x,可列方程________.16.為估計全市九年級學生早讀時間情況,從某私立學校隨機抽取100人進行調查,在這個問題中,調查的樣本________(填“具有”或“不具有”)代表性.17.已知是一張等腰直角三角形板,,要在這張紙板中剪取正方形(剪法如圖1所示),圖1中剪法稱為第次剪取,記所得的正方形面積為;按照圖1中的剪法,在余下的和中,分別剪取兩個全等正方形,稱為第次剪取,并記這兩個正方形面積和為,(如圖2);再在余下的四個三角形中,用同樣的方法分別剪取正方形,得到四個相同的正方形,稱為第次剪取,并記這四個正方形的面積和為,(如圖3);繼續操作下去···則第次剪取后,___________.18.如圖,在平面直角坐標系中,直角三角形的直角頂點與原點O重合,頂點A,B恰好分別落在函數,的圖象上,則tan∠ABO的值為___________三、解答題(共66分)19.(10分)解方程:x(x﹣3)+6=2x.20.(6分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,G是上一動點,AG,DC的延長線交于點F,連接AC,AD,GC,GD.(1)求證:∠FGC=∠AGD;(2)若AD=1.①當AC⊥DG,CG=2時,求sin∠ADG;②當四邊形ADCG面積最大時,求CF的長.21.(6分)如圖,四邊形內接于,對角線為的直徑,過點作的垂線交的延長線于點,過點作的切線,交于點.(1)求證:;(2)填空:①當的度數為時,四邊形為正方形;②若,,則四邊形的最大面積是.22.(8分)如圖,∠MAN=90°,,分別為射線,上的兩個動點,將線段繞點逆時針旋轉到,連接交于點.(1)當∠ACB=30°時,依題意補全圖形,并直接寫出的值;(2)寫出一個∠ACB的度數,使得,并證明.23.(8分)如圖,在平行四邊形中,、分別為邊、的中點,是對角線,過點作交的延長線于點.(1)求證:;(2)若,求證:四邊形是菱形.24.(8分)如圖,在平面直角坐標系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,點D與點A關于y軸對稱,tan∠ACB=,點E、F分別是線段AD、AC上的動點,(點E不與點A,D重合),且∠CEF=∠ACB.(1)求AC的長和點D的坐標;(2)求證:;(3)當△EFC為等腰三角形時,求點E的坐標.25.(10分)如圖,在等腰三角形ABC中,于點H,點E是AH上一點,延長AH至點F,使.求證:四邊形EBFC是菱形.26.(10分)圖1是某小區入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.(1)求點M到地面的距離;(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數據:1.73,結果精確到0.01米)
參考答案一、選擇題(每小題3分,共30分)1、C【解析】分析:因為函數圖象在一、三象限,故有m>0,故①錯誤;在每個象限內,y隨x的增大而減小,故②錯;對于③,將A、B坐標代入,得:h=-m,,因為m>0,所以,h<k,故③正確;函數圖象關于原點對稱,故④正確.因此,正確的是③④.故選C.2、B【分析】在同一平面內,如果把一個圖形繞某一點旋轉180度,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.【詳解】A、C、D都是中心對稱圖形;不是中心對稱圖形的只有B.故選B.【點睛】本題屬于基礎應用題,只需學生熟知中心對稱圖形的定義,即可完成.3、B【分析】過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結PA,根據切線的性質得PC⊥y軸,則P點的橫坐標為4,所以E點坐標為(4,4),易得△EOD和△PEH都是等腰直角三角形,根據垂徑定理由PH⊥AB得AH=,根據勾股定理可得PH=2,于是根據等腰直角三角形的性質得PE=,則PD=,然后利用第一象限點的坐標特征寫出P點坐標.【詳解】解:過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結PA,
∵⊙P與y軸相切于點C,
∴PC⊥y軸,
∴P點的橫坐標為4,
∴E點坐標為(4,4),
∴△EOD和△PEH都是等腰直角三角形,
∵PH⊥AB,
∴AH=,
在△PAH中,PH=,
∴PE=,
∴PD=,
∴P點坐標為(4,).故選:B【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了垂徑定理.4、C【分析】根據中心對稱圖形的概念判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意.故選:C.【點睛】本題考查了中心對稱圖形的識別,熟練掌握概念是解題的關鍵.5、D【解析】確定各個選項的主視圖和左視圖,即可解決問題.【詳解】A選項,主視圖:圓;左視圖:圓;不符合題意;B選項,主視圖:矩形;左視圖:矩形;不符合題意;C選項,主視圖:三角形;左視圖:三角形;不符合題意;D選項,主視圖:矩形;左視圖:三角形;符合題意;故選D【點睛】本題考查幾何體的三視圖,難度低,熟練掌握各個幾何體的三視圖是解題關鍵.6、D【分析】由于P1、P2、P3是同一反比例圖像上的點,則圍成的三角形雖然形狀不同,但面積均為.【詳解】根據反比例函數的k的幾何意義,△P1A1O、△P2A2O、△P3A3O的面積相同,均為,所以S1=S2=S3,故選D.【點睛】本題考查反比例函數系數k的幾何意義,過同一反比例上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,而圍成的三角形的面積為,本知識點是中考的重要考點,應高度關注.7、B【解析】分析:據二次函數的頂點式,可直接得出其頂點坐標;解:∵二次函數的解析式為:y=-(x-1)2+3,∴其圖象的頂點坐標是:(1,3);故選A.8、C【分析】根據題意直接利用概率的意義以及三角形內角和定理分別分析得出答案.【詳解】解:A、投擲一枚質地均勻的硬幣100次,正面向上的次數一定是50次,錯誤;B、某種彩票的中獎率是,說明每買100張彩票,不一定有1張中獎,故此選項錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“任意畫一個三角形,其內角和為360°”是不可能事件,故此選項錯誤.故選:C.【點睛】本題主要考查概率的意義,熟練并正確掌握概率的意義是解題關鍵.9、D【分析】先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.10、A【解析】根據已知,運用直角三角形和三角函數得到上升的高度為:8tan20°.【詳解】設木樁上升了h米,∴由已知圖形可得:tan20°=,∴木樁上升的高度h=8tan20°故選B.二、填空題(每小題3分,共24分)11、【分析】根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.12、4【分析】如圖,連接OC交BD于K.設DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,由AD∥CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EK?EB,求出k即可解決問題.【詳解】解:如圖,連接OC交BD于K.∵,∴OC⊥BD,∵BE=4DE,∴可以假設DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,∵AB是直徑,∴∠ADK=∠DKC=∠ACB=90°,∴AD∥CK,∴AE:EC=DE:EK,∴AE:6=k:1.5k,∴AE=4,∵△ECK∽△EBC,∴EC2=EK?EB,∴36=1.5k×4k,∵k>0,∴k=,∴BC===2,∴AB===4.故答案為:4.【點睛】本題考查相似三角形的判定和性質,垂徑定理,圓周角定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考常考題型.13、【解析】由“上加下減”的原則可知,將拋物線向上平移3單位,得到的拋物線的解析式是故答案為【點睛】二次函數圖形平移規律:左加右減,上加下減.14、2【分析】根據新定義運算對式子進行變形得到關于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【點睛】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據題意正確得到方程是解題的關鍵.15、25(1-x)2=16【解析】試題分析:對于增長率和降低率問題的一般公式為:增長前數量×=增長后的數量,降低前數量×=降低后的數量,故本題的答案為:16、不具有【分析】根據抽取樣本的注意事項即要考慮樣本具有廣泛性與代表性,其代表性就是抽取的樣本必須是隨機的,以此進行分析.【詳解】解:要估計全市九年級學生早讀時間情況,應從該市所以學校九年級中隨機抽取100人進行調查,所以在這個問題中調查的樣本不具有代表性.故此空填“不具有”.【點睛】本題考查抽樣調查的可靠性,解題時注意:樣本具有代表性是指抽取的樣本必須是隨機的,即各個方面,各個層次的對象都要有所體現.17、【分析】根據題意可求得△ABC的面積,且可得出每個正方形是剩余三角形面積的一半,即為上一次剪得的正方形面積的一半,可得出與△ABC的面積之間的關系,可求得答案.【詳解】∵AC=BC=2,
∴∠A=∠B=45°,
∵四邊形CEDF為正方形,
∴DE⊥AC,
∴AE=DE=DF=BF,
∴,同理每次剪得的正方形的面積都是所在三角形面積的一半,∴,同理可得,依此類推可得,故答案為:【點睛】本題主要考查了正方形與等腰直角三角形的性質,根據條件找到與之間的關系是解題的關鍵.注意規律的總結與歸納.18、【分析】根據反比例函數的幾何意義可得直角三角形的面積;根據題意可得兩個直角三角形相似,而相似比就是直角三角形?AOB的兩條直角邊的比,從而得出答案.【詳解】過點A、B分別作AD⊥x軸,BE⊥x軸,垂足為D、E,∵頂點A,B恰好分別落在函數,的圖象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴則tan∠ABO=故本題答案為:.【點睛】本題考查了反比例函數,相似三角形和三角函數的綜合題型,連接輔助線是解題的關鍵.三、解答題(共66分)19、x1=2,x2=1.【分析】先去掉括號,再把移到等號的左邊,再根據因式分解法即可求解.【詳解】解:x(x﹣1)+6=2x,x2﹣1x+6﹣2x=0,x2﹣5x+6=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.【點睛】本題考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步驟:①移項,使方程的右邊化為零;②將方程的左邊分解為兩個一次因式的乘積;③令每個因式分別為零,得到兩個一元一次方程;④解這兩個一元一次方程,它們的解就都是原方程的解.20、(1)證明見解析;(2)①sin∠ADG=;②CF=1.【分析】(1)由垂徑定理可得CE=DE,CD⊥AB,由等腰三角形的性質和圓內接四邊形的性質可得∠FGC=∠ADC=∠ACD=∠AGD;(2)①如圖,設AC與GD交于點M,證△GMC∽△AMD,設CM=x,則DM=3x,在Rt△AMD中,通過勾股定理求出x的值,即可求出AM的長,可求出sin∠ADG的值;②S四邊形ADCG=S△ADC+S△ACG,因為點G是上一動點,所以當點G在的中點時,△ACG的的底邊AC上的高最大,此時△ACG的面積最大,四邊形ADCG的面積也最大,分別證∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=1.【詳解】證明:(1)∵AB是⊙O的直徑,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四邊形ADCG是圓內接四邊形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)①如圖,設AC與GD交于點M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,設CM=x,則DM=3x,由(1)知,AC=AD,∴AC=1,AM=1﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(1﹣x)2+(3x)2=12,解得,x1=0(舍去),x2=,∴AM=1﹣=,∴sin∠ADG===;②S四邊形ADCG=S△ADC+S△ACG,∵點G是上一動點,∴當點G在的中點時,△ACG的底邊AC上的高最大,此時△ACG的面積最大,四邊形ADCG的面積也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=1.【點睛】本題考查的是圓的有關性質、垂徑定理、解直角三角形等,熟練掌握圓的有關性質并靈活運用是解題的關鍵.21、(1)證明見解析;(2)①;②1.【分析】(1)根據已知條件得到CE是的切線.根據切線的性質得到DF=CF,由圓周角定理得到∠ADC=10°,于是得到結論;(2)①連接OD,根據圓周角定理和正方形的判定定理即可得到結論;②根據圓周角定理得到∠ADC=∠ABC=10°,根據勾股定理得到根據三角形的面積公式即可得到結論.【詳解】(1)證明:∵是的直徑,,∴是的切線.又∵是的切線,且交于點,∴,∴,∵是的直徑,∴,∴,,∴,∴,∴.(2)解:①當∠ACD的度數為45°時,四邊形ODFC為正方形;理由:連接OD,∵AC為的直徑,∴∠ADC=10°,∵∠ACD=45°,∴∠DAC=45°,∴∠DOC=10°,∴∠DOC=∠ODF=∠OCF=10°,.∵OD=OC,∴四邊形ODFC為正方形;故答案為:45°②四邊形ABCD的最大面積是1,理由:∵AC為的直徑,∴∠ADC=∠ABC=10°,∵AD=4,DC=2,∴,∴要使四邊形ABCD的面積最大,則△ABC的面積最大,∴當△ABC是等腰直角三角形時,△ABC的面積最大,∴四邊形ABCD的最大面積:故答案為:1【點睛】本題以圓為載體,考查了圓的切線的性質、平行線的判定、平行四邊形的性質、直角三角形全等的判定和45°角的直角三角形的性質,涉及的知識點多,熟練掌握相關知識是解題的關鍵.22、(1);(2)∠.【分析】(1)按照題意補全圖形即可,由已知可證△∽△,再由相似三角形的性質可知,從而可得答案;(2)過點作于點,由已知可證△∽△,從而有,再利用∠ACB的度數可求出,從而可得出答案.【詳解】解:(1)正確補全圖形;∵∴△∽△∴∵∴.(2)解:∠.證明:∵,∴.∵,∴.過點作于點,∴∵,∴.∵,∴.∵∠.∴△∽△.∴.【點睛】本題主要考查相似三角形的判定及性質,掌握旋轉的性質及相似三角形的判定是解題的關鍵.23、(1)見解析;(2)見解析【分析】(1)根據已知條件證明BE=DF,BE∥DF,從而得出四邊形DFBE是平行四邊形,即可證明DE∥BF,
(2)先證明DE=BE,再根據鄰邊相等的平行四邊形是菱形,從而得出結論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD.
∵點E、F分別是AB、CD的中點,
∴BE=AB,DF=CD.
∴BE=DF,BE∥DF,
∴四邊形DFBE是平行四邊形,
∴DE∥BF;
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四邊形AGBD是矩形,
∴∠ADB=90°,
在Rt△ADB中
∵E為AB的中點,
∴AE=BE=DE,
∵四邊形DFBE是平行四邊形,
∴四邊形DEBF是菱形.【點睛】本題主要考查了平行四邊形的性質、菱形的判定,直角三角形的性質:在直角三角形中斜邊中線等于斜邊一半,比較綜合,難度適中.24、(1)AC=20,D(12,0);(2)見解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函數和勾股定理即可求出BC、AC的長度,從而得到A點坐標,由點D與點A關于y軸對稱,進而得到D點的坐標;(2)欲證,只需證明△AEF與△DCE相似,只需要證明兩個對應角相等即可.在△AEF與△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性質證得∠AEF=∠DCE,問題即得解決;(3)當△EFC為等腰三角形時,有三種情況,需要分類討論:①當CE=EF時,此時△AEF與△DCE相似比為1,則有AE=CD,即可求出E點坐標;②當EF=FC時,利用等腰三角形的性質和解直角三角形的知識易求得CE,再利用(2)題的結論即可求出AE的長,進而可求出E點坐標;③當CE=CF時,可得E點與D點重合,這與已知條件矛盾,故此種情況不存在.【詳解】解:(1)∵四邊形ABCO為矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A點坐標為(﹣12,0),∵點D與點A關于y軸對稱,∴D(12,0);(2)∵點D與點A關于y軸對稱,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴;(3)當△EFC為等腰三角形時,有以下三種情況:①當CE=EF時,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 半角題目及答案
- 安全綜合知識試題及答案
- 鋼水燙傷培訓課件
- 可穿戴醫療設備市場潛力分析:2025年技術創新與需求變化報告
- 安全生產選擇試題及答案
- 數字藝術市場2025年交易活躍度研究報告:藝術與虛擬現實結合的新領域001
- 安全檢查工試題及答案
- 安全管理模擬試題及答案
- 預防燃氣泄漏培訓課件
- 中國原始社會美術課件
- 2025安全生產月活動總結模板十(19P)
- 小孩辦身份證的委托書范本
- 半條被子(紅軍長征時期故事) PPT
- 常用標準波導和法蘭尺寸
- 2012《天津市安裝工程預算基價》電氣工程(預算基價導出)
- 1104基礎報表填報說明(最新)
- UCLA肩關節評分系統
- 老舊小區改造技術標-
- 分支型室速的導管消融術ppt課件
- 2011年吉林省初中生物會考試題
- 長陸電子秤TR700說明書V1.17
評論
0/150
提交評論