




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆陜西省興平市秦嶺中學高三下學期(5月)三調數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區的叫法)、撞球(中國地區的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm2.若集合,,則()A. B. C. D.3.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.34.下列函數中,既是奇函數,又在上是增函數的是().A. B.C. D.5.在中,,,,則邊上的高為()A. B.2 C. D.6.設數列的各項均為正數,前項和為,,且,則()A.128 B.65 C.64 D.637.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.8.的展開式中的系數為()A.-30 B.-40 C.40 D.509.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.10.已知函數滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.11.計算等于()A. B. C. D.12.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個袋中裝著標有數字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數字最大的為4的概率是__.14.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.15.在△ABC中,a=3,,B=2A,則cosA=_____.16.數列滿足遞推公式,且,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調,且恒成立,求的取值范圍.(為自然對數的底數).18.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.19.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結果,不要求過程).20.(12分)已知函數,且.(1)若,求的最小值,并求此時的值;(2)若,求證:.21.(12分)是數列的前項和,且.(1)求數列的通項公式;(2)若,求數列中最小的項.22.(10分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養,引領學生“讀經典用經典”,某廣播電視臺計劃推出一檔“閱讀經典”節目.工作人員在前期的數據采集中,在某高中學校隨機抽取了120名學生做調查,統計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯表,并根據聯表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經從所調查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數,求5的分布列及數學期望附表及公式:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【題目詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【題目點撥】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.2、B【解題分析】
根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【題目詳解】依題意,;而,故,則.故選:B.【題目點撥】本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.3、C【解題分析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;4、B【解題分析】
奇函數滿足定義域關于原點對稱且,在上即可.【題目詳解】A:因為定義域為,所以不可能時奇函數,錯誤;B:定義域關于原點對稱,且滿足奇函數,又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數,,在上,因為,所以在上不是增函數,錯誤;D:定義域關于原點對稱,且,滿足奇函數,在上很明顯存在變號零點,所以在上不是增函數,錯誤;故選:B【題目點撥】此題考查判斷函數奇偶性和單調性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.5、C【解題分析】
結合正弦定理、三角形的內角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【題目詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【題目點撥】本小題主要考查正弦定理解三角形,考查三角形的內角和定理、兩角和的正弦公式,屬于中檔題.6、D【解題分析】
根據,得到,即,由等比數列的定義知數列是等比數列,然后再利用前n項和公式求.【題目詳解】因為,所以,所以,所以數列是等比數列,又因為,所以,.故選:D【題目點撥】本題主要考查等比數列的定義及等比數列的前n項和公式,還考查了運算求解的能力,屬于中檔題.7、B【解題分析】
設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯立,列出韋達定理,結合可求得的值,由此可得出直線的斜率.【題目詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【題目點撥】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.8、C【解題分析】
先寫出的通項公式,再根據的產生過程,即可求得.【題目詳解】對二項式,其通項公式為的展開式中的系數是展開式中的系數與的系數之和.令,可得的系數為;令,可得的系數為;故的展開式中的系數為.故選:C.【題目點撥】本題考查二項展開式中某一項系數的求解,關鍵是對通項公式的熟練使用,屬基礎題.9、C【解題分析】
根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【題目詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【題目點撥】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.10、C【解題分析】
由題意可知,代入函數表達式即可得解.【題目詳解】由可知函數是周期為4的函數,.故選:C.【題目點撥】本題考查了分段函數和函數周期的應用,屬于基礎題.11、A【解題分析】
利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【題目詳解】原式.故選:A【題目點撥】本小題主要考查誘導公式,考查對數運算,屬于基礎題.12、D【解題分析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題,得滿足題目要求的情況有,①有一個數字4,另外兩個數字從1,2,3里面選和②有兩個數字4,另外一個數字從1,2,3里面選,由此即可得到本題答案.【題目詳解】滿足題目要求的情況可以分成2大類:①有一個數字4,另外兩個數字從1,2,3里面選,一共有種情況;②有兩個數字4,另外一個數字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數字最大的為4的概率.故答案為:【題目點撥】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.14、20【解題分析】
由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【題目詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【題目點撥】本題考查三視圖以及幾何體體積,考查學生空間想象能力以及數學運算能力,是一道容易題.15、【解題分析】
由已知利用正弦定理,二倍角的正弦函數公式即可計算求值得解.【題目詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【題目點撥】本題主要考查了正弦定理,二倍角的正弦函數公式在解三角形中的應用,屬于基礎題.16、2020【解題分析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【題目詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【題目點撥】本題考查數列遞推式和累加法的應用,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】
(1)先求出,又由可判斷出在上單調遞減,故,令,記,利用導數求出的最小值即可;(2)由在上不單調轉化為在上有解,可得,令,分類討論求的最大值,再求解即可.【題目詳解】(1)已知,,由可得,又由,知在上單調遞減,令,記,則在上單調遞增;,在上單調遞增;,(2),,在上不單調,在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調增,在上單調減.于是知(i)當即時,恒成立,在上單調增,,,.(ii)當時,,故不滿足題意.綜上所述,【題目點撥】本題主要考查了導數的綜合應用,考查了分類討論,轉化與化歸的思想,考查了學生的運算求解能力.18、(1);(2).【解題分析】
(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【題目詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【題目點撥】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數的基本關系以及二倍角公式求值,考查計算能力,屬于中等題.19、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解題分析】
(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【題目詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,
建立空間直角坐標系E-xyz,設AB=BD=DC=AD=2,
則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個法向量為,設平面ADC的一個法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.
(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【題目點撥】本題考查線面垂直的證明、幾何體體積計算、二面角有關的立體幾何綜合題,屬于中等題.20、(1)最小值為,此時;(2)見解析【解題分析】
(1)由已知得,法一:,,根據二次函數的最值可求得;法二:運用基本不等式構造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【題目詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 實驗室安全規定
- 2025年滑雪教練職業技能測試卷:2025年滑雪教練冰雪運動項目賽事運營與管理試題
- 2025年報關員職業資格考試試卷:報關員職業資格考試備考策略與沖刺復習押題預測試題
- 特別聲明性質的工作情況說明證明(6篇)
- 展開想象翅膀的想象作文8篇范文
- 電子商務領域銷售代表工資單證明(7篇)
- 一次難忘的生日記事回憶10篇
- 美妝個性化定制服務模式在美容院服務流程優化中的應用報告
- 保護環境從我做起議論文分享7篇
- 時間沙漏寫物作文(11篇)
- 國家開放大學漢語言文學本科《中國現代文學專題》期末紙質考試第三大題分析題庫2025春期版
- 離婚協議書 標準版電子版(2025年版)
- 2024北京市昌平區中考真題生物+答案
- DBJ50-T-098-2019 城市綠化養護質量標準
- 手術室醫療垃圾的分類
- 教育領域中的信息化技術討論以小學數為例
- 綠色施工知識培訓課件
- 《骨盆骨折的急救》課件
- 2025年拍賣師職業技能知識考試題庫與答案(含各題型)
- 浙江省杭州市六校2023-2024學年高一下學期期末聯考技術試卷-高中技術
- 《人工智能:AIGC基礎與應用》題庫 項選擇題
評論
0/150
提交評論