




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SpatialPoissonProcesses空間泊松點(diǎn)過(guò)程TheSpatialPoissonProcessConsideraspatialconfigurationofpointsintheplane:空間泊松點(diǎn)過(guò)程N(yùn)otation:
LetSbeasubsetofR2.(R,
R2,
R3,…)
LetAbethefamilyofsubsetsofS.
Forlet|A|denotethesizeofA. (length,area,volume,…)
LetN(A)=thenumberofpointsinthesetA.(AssumeSisnormalizedtohavevolume1.)空間泊松點(diǎn)過(guò)程ThenisahomogeneousPoissonpointprocesswithintensityif:
Foreveryfinitecollection{A1,A2,…,An}ofdisjointsubsetsofS,N(A1),N(A2),…,N(A3)areindependent.
Foreach空間泊松點(diǎn)過(guò)程Alternatively,aspatialPoissonprocesssatisfiesthefollowingaxioms:IfA1,A2,…,Anaredisjointregions,thenN(A1),N(A2),…,N(An)areindependentrv’sandN(A1UA2U…UAn)=N(A1)+N(A2)+…+N(An)TheprobabilitydistributionofN(A)dependsonthesetAonlythroughit’ssize|A|.空間泊松點(diǎn)過(guò)程ThereexistsasuchthatThereisprobabilityzeroofpointsoverlapping:空間泊松點(diǎn)過(guò)程Iftheseaxiomsaresatisfied,wehave:fork=0,1,2,…空間泊松點(diǎn)過(guò)程ConsiderasubsetAofS:Thereare3pointsinA…h(huán)owaretheydistributedinA?A
Expectauniformdistribution…空間泊松點(diǎn)過(guò)程Infact,forany,wehaveProof:空間泊松點(diǎn)過(guò)程So,weknowthat,fork=0,1,…,n:ie:N(B)|N(A)=n~bin(n,|B|/|A|)空間泊松點(diǎn)過(guò)程Generalization:ForapartitionA1,A2,…,AmofA:forn1+n2+…+nm=n.(Multinomialdistribution)空間泊松點(diǎn)過(guò)程SimulatingaspatialPoissonpatternwithintensity overarectangularregionS=[a,b]x[c,d].
simulateaPoisson()numberofpoints(perhapsbyfindingthesmallestnumberNsuchthat)
scatterthatnumberofpointsuniformlyoverS(foreachpoint,drawU1,U2,indepunif(0,1)’sandplaceitat((b-a)U1+a),(d-c)U2+c)空間泊松點(diǎn)過(guò)程Consideratwo-dimensionalPoissonprocessofparticlesintheplanewithintensityparameter.Let’sdeterminethe(random)distanceDbetweenaparticleanditsnearestneighbor.Forx>0,空間泊松點(diǎn)過(guò)程So,forx>0.In3-Dwecouldshowthat:空間泊松點(diǎn)過(guò)程Example:SpatialPatternsinStatisticalEcologyConsiderawideexpanseofopengroundofauniformcharacter(suchasthemuddybedofarecentlydrainedlake).Thenumberofwind-dispersedseedsoccurringinanyparticular“quadrat”onthissurfaceiswellmodeledbyaPoissonrandomvariable.ThereasonthistendstobetrueisduetothebinomialapproximationtothePoissondistributionwhichwillholdiftherearemanyseedswithanextremelysmallchanceoffallingintothequadrat.空間泊松點(diǎn)過(guò)程Supposenowthattheprobabilitythataseedgerminatesispandthattheyarenotsufficientlypackedtogethertointeractatthisstage.Question:Whatisthedistributionofthenumberofgerminatedseeds?Answer:ThisisathinnedPoissonprocess…
withrate(acceptprobabilityis)So,thesurvivingseedscontinuetobedistributed“atrandom”.空間泊松點(diǎn)過(guò)程SimulationProblem:
Type1andtype2seedswillgerminatewithprobabilitiesp1andp2,respectively.
Type1plantswillproduceKoffshootplantsonrunnersrandomlyspacedaroundtheplantwhereK~geom(p).(P(K=0)=p)
Twotypesofseedsarerandomlydispersedonaone-acrefieldaccordingtotwoindependentPoissonprocesseswithintensities
Supposethattheone-acrefieldisevenlydividedinto10x10quadrats.空間泊松點(diǎn)過(guò)程
Assumethatthenumberofoffshootplantsthatfallintoaquadratdifferentfromtheirparentplantsisnegligible.
Aparticularinsectpopulationcanonlybesupportedifatleast75%ofthequadratscontainatleast35plants.
Usingp=0.9,p1=0.7,andp2=0.8,explorethevaluesofthatwillgivetheinsectpopulationa95%chanceofsurviving.
Usethehugelysimplifyingassumptionthatthereisnotimecomponenttothisprocess(and,inparticular,thatoffshootplantsdonothavefurtheroffshoots)空間泊松點(diǎn)過(guò)程
Keepinmindthatwedon’treallyhavetokeeptrackofwheretheindividualplantsare,onlythenumberineachquadrat.
Notethatwedon’thavetoconsidergerminationoftheplantsasasecondstepafterthearrivaloftheseeds–insteadconsiderathinnedPoissonnumberofplantsofTypeiwithrateTipsonsimulatingthis:
Ratherthandrawinguniformlydistributedlocationsfortheseeds,wecansimulatethenumbersforeachquadratseparately(andignorelocations)usingthefactthateachquadratwillcontainPoisson()germinatingseeds.空間泊松點(diǎn)過(guò)程
ItwouldbeniceifwecouldfurthermodifythePoissonnumberofseedsforType
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 模擬應(yīng)聘面試題及答案
- 2025年音樂(lè)理論與實(shí)踐考試試題及答案
- 西方國(guó)家的社會(huì)公正理念探討試題及答案
- 2025年統(tǒng)計(jì)學(xué)基礎(chǔ)知識(shí)考試題及答案
- 嚇人測(cè)試題及答案
- 2025年翻譯學(xué)專業(yè)考試題及答案
- 優(yōu)衣庫(kù)招聘面試題及答案
- 規(guī)劃中心面試題及答案
- 寶鋼財(cái)務(wù)面試題及答案
- 汽車電子技術(shù)模擬試題
- 無(wú)創(chuàng)機(jī)械通氣護(hù)理要點(diǎn)
- TCCAATB0045-2023城市航站樓服務(wù)規(guī)范
- 七下道法【選擇題】專練50題
- 2024年北京第二次高中學(xué)業(yè)水平合格信息技術(shù)試卷試(含答案詳解)
- 職業(yè)壓力管理學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 人力資源管理:基于創(chuàng)新創(chuàng)業(yè)視角學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 安全環(huán)保職業(yè)健康法律法規(guī)清單2024年
- 基于杜邦分析法的蔚來(lái)汽車經(jīng)營(yíng)財(cái)務(wù)分析及建議
- 職業(yè)教育專業(yè)教學(xué)資源庫(kù)建設(shè)工作方案和技術(shù)要求
- 江蘇省徐州市2023-2024學(xué)年七年級(jí)下學(xué)期期末英語(yǔ)試卷(含答案解析)
- 2024年西藏初中學(xué)業(yè)水平考試生物試題(原卷版)
評(píng)論
0/150
提交評(píng)論