




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省菏澤、煙臺2024屆高三下學期第一次調研數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,則()A. B.C. D.2.設全集,集合,,則()A. B. C. D.3.a為正實數,i為虛數單位,,則a=()A.2 B. C. D.14.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.45.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.6.若集合,,則()A. B. C. D.7.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.48.已知實數滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]9.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.10.某個命題與自然數有關,且已證得“假設時該命題成立,則時該命題也成立”.現已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立11.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()12.已知集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平行四邊形中,,,則的值為_____.14.函數的定義域是.15.在等差數列()中,若,,則的值是______.16.如圖,已知圓內接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知,,.(1)求證:;(2)若,求證:.18.(12分)在平面直角坐標系中,直線的傾斜角為,且經過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.19.(12分)設函數其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導函數在區間上存在零點,證明:當時,.20.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.21.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?22.(10分)已知函數(1)解不等式;(2)若函數,若對于任意的,都存在,使得成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
先確定集合中的元素,然后由交集定義求解.【題目詳解】,.故選:A.【題目點撥】本題考查求集合的交集運算,掌握交集定義是解題關鍵.2、D【解題分析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【題目詳解】由于故集合或故集合故選:D【題目點撥】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數學運算的能力,屬于中檔題.3、B【解題分析】
,選B.4、C【解題分析】
根據等差數列的求和公式即可得出.【題目詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【題目點撥】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.5、D【解題分析】解:根據幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據,計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據計算它的體積即可.6、A【解題分析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【題目詳解】解:由集合,解得,則故選:.【題目點撥】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.7、A【解題分析】
根據題意依次計算得到答案.【題目詳解】根據題意知:,,故,,.故選:.【題目點撥】本題考查了數列值的計算,意在考查學生的計算能力.8、B【解題分析】
作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【題目詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【題目點撥】本題考查簡單的非線性規劃.解題關鍵是理解非線性目標函數的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.9、A【解題分析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.10、C【解題分析】
寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【題目詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【題目點撥】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.11、D【解題分析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【題目詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【題目點撥】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.12、C【解題分析】
由題意和交集的運算直接求出.【題目詳解】∵集合,∴.故選:C.【題目點撥】本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【題目詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【題目點撥】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數量積的運算,考查了計算能力,屬于基礎題.14、【解題分析】解:因為,故定義域為15、-15【解題分析】
是等差數列,則有,可得的值,再由可得,計算即得.【題目詳解】數列是等差數列,,又,,,故.故答案為:【題目點撥】本題考查等差數列的性質,也可以由已知條件求出和公差,再計算.16、【解題分析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【題目詳解】由圓內接四邊形的性質可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【題目點撥】本題考查余弦定理解三角形,同角三角函數基本關系,意在考查方程思想,計算能力,屬于中檔題型,本題的關鍵是熟悉圓內接四邊形的性質,對角互補.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解題分析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質論證.【題目詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【題目點撥】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉化思想,屬于中檔題..18、(Ⅰ)(t為參數),;(Ⅱ)1.【解題分析】
(Ⅰ)直接由已知寫出直線l1的參數方程,設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數方程代入C的直角坐標方程中,得到關于t的一元二次方程,再由參數t的幾何意義可得|AP|?|AQ|的值.【題目詳解】(Ⅰ)直線l1的參數方程為,(t為參數)即(t為參數).設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標方程為x2-4x+y2=0(x≠0).(Ⅱ)將l1的參數方程代入C的直角坐標方程中,得,即,t1,t2為方程的兩個根,∴t1t2=-1,∴|AP|?|AQ|=|t1t2|=|-1|=1.【題目點撥】本題考查簡單曲線的極坐標方程,考查直角坐標方程與直角坐標方程的互化,訓練了直線參數方程中參數t的幾何意義的應用,是中檔題.19、(Ⅰ);(Ⅱ)證明見解析【解題分析】
(Ⅰ)求導得到,,解得答案.(Ⅱ),故,在上單調遞減,在上單調遞增,,設,證明函數單調遞減,故,得到證明.【題目詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點,設零點為,故,即,在上單調遞減,在上單調遞增,故,設,則,設,則,單調遞減,,故恒成立,故單調遞減.,故當時,.【題目點撥】本題考查了函數的切線問題,利用導數證明不等式,轉化為函數的最值是解題的關鍵.20、(1);(2).【解題分析】
(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【題目詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【題目點撥】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力.21、(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解題分析】
(1)連接交于,由相似三角形可得,結合得出,故而平面;(2)過作,可證平面,根據計算,得出的大小,再計算的長.【題目詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DA-PEI-GO共沉積改性陽離子交換膜的性能及應用研究
- 六年級語文知識點復習鞏固措施
- 運用議題式教學培育初中生法治意識的行動研究
- 基于冰-水直接接觸的冰柱旋轉熔化規律與相變傳熱特性
- 黑龍江省齊齊哈爾市建華區2024年化學九上期末聯考試題含解析
- 山東省新泰市新甫中學2025屆八年級數學第一學期期末統考試題含解析
- 二年級語文部編版寫作能力計劃
- 山東協和學院《鋼筋混凝土結構設計》2023-2024學年第一學期期末試卷
- 論違約方合同解除權
- 大學生相對剝奪感對核心自我評價的影響-有調節的中介模型及干預研究
- DB37-T 2040-2023 金屬礦山尾礦干排安全技術規范
- 審計知識培訓課件
- 二零二五年度戶外燒烤場地租賃及食品安全保障服務協議3篇
- 開窗計劃-街區營造洞察報告 2025.1
- 2025年度地下綜合管廊工程質量保修協議2篇
- 2021年縣鄉人大換屆選舉調研報告
- 化學檢驗員(高級)復習題與參考答案
- 《太原星河灣規劃》課件
- 裝配鉗工基本技能培訓
- 幼兒園大班音樂活動《粉刷匠》課件
- 第五講鑄牢中華民族共同體意識-2024年形勢與政策
評論
0/150
提交評論