甘肅省武威市古浪縣職業技術教育中心2024屆高三數學試題綜合試卷(15)數學試題_第1頁
甘肅省武威市古浪縣職業技術教育中心2024屆高三數學試題綜合試卷(15)數學試題_第2頁
甘肅省武威市古浪縣職業技術教育中心2024屆高三數學試題綜合試卷(15)數學試題_第3頁
甘肅省武威市古浪縣職業技術教育中心2024屆高三數學試題綜合試卷(15)數學試題_第4頁
甘肅省武威市古浪縣職業技術教育中心2024屆高三數學試題綜合試卷(15)數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省武威市古浪縣職業技術教育中心2024屆高三數學試題綜合試卷(15)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為得到y=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π2.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.3.若函數f(x)=x3+x2-在區間(a,a+5)上存在最小值,則實數a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)4.如果,那么下列不等式成立的是()A. B.C. D.5.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.16.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20177.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.8.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.9.已知集合,則全集則下列結論正確的是()A. B. C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.411.為了加強“精準扶貧”,實現偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.6412.函數的圖象大致為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為銳角,若,則的值為____________.14.下圖是一個算法流程圖,則輸出的S的值是______.15.已知函數.若在區間上恒成立.則實數的取值范圍是__________.16.設函數,,其中.若存在唯一的整數使得,則實數的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現象不斷的發生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.(i)試運用概率統計的知識,若,試求p關于k的函數關系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.參考數據:,,,,18.(12分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.19.(12分)在中,角所對的邊分別是,且.(1)求角的大小;(2)若,求邊長.20.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.21.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.22.(10分)已知函數.(1)求函數的單調遞增區間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】試題分析:因為,所以為得到y=sin(2x-π3)的圖象,只需要將考點:三角函數的圖像變換.2、B【解題分析】

由題意首先確定導函數的符號,然后結合題意確定函數在區間和處函數的特征即可確定函數圖像.【題目詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【題目點撥】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.3、C【解題分析】

求函數導數,分析函數單調性得到函數的簡圖,得到a滿足的不等式組,從而得解.【題目詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數,在(-2,0)上是減函數,作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【題目點撥】本題主要考查了利用函數導數研究函數的單調性,進而研究函數的最值,屬于常考題型.4、D【解題分析】

利用函數的單調性、不等式的基本性質即可得出.【題目詳解】∵,∴,,,.故選:D.【題目點撥】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.5、C【解題分析】

根據雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【題目詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【題目點撥】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.6、D【解題分析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環.輸出1.選D.7、C【解題分析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【題目詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【題目點撥】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.8、B【解題分析】

由值域為確定的值,得,利用對稱中心列方程求解即可【題目詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【題目點撥】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為09、D【解題分析】

化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【題目詳解】由,則,故,由知,,因此,,,,故選:D【題目點撥】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.10、C【解題分析】

首先把三視圖轉換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【題目詳解】解:根據幾何體的三視圖轉換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【題目點撥】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎題.11、B【解題分析】

根據題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【題目詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【題目點撥】本題考查排列組合、數學文化,還考查數學建模能力以及分類討論思想,屬于中檔題.12、D【解題分析】

由題可得函數的定義域為,因為,所以函數為奇函數,排除選項B;又,,所以排除選項A、C,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

∵為銳角,,∴,∴,,故.14、【解題分析】

根據流程圖,運行程序即得.【題目詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【題目點撥】本題考查算法流程圖,是基礎題.15、【解題分析】

首先解不等式,再由在區間上恒成立,即得到不等組,解得即可.【題目詳解】解:且,即解得,即因為在區間上恒成立,解得即故答案為:【題目點撥】本題考查一元二次不等式及函數的綜合問題,屬于基礎題.16、【解題分析】

根據分段函數的解析式畫出圖像,再根據存在唯一的整數使得數形結合列出臨界條件滿足的關系式求解即可.【題目詳解】解:函數,且畫出的圖象如下:因為,且存在唯一的整數使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數使得時,所以,存在唯一的整數使得所以.根據圖像可知,當時,恒成立.綜上所述,存在唯一的整數使得,此時故答案為:【題目點撥】本題主要考查了數形結合分析參數范圍的問題,需要根據題意分別分析定點右邊的整數點中為滿足條件的唯一整數,再數形結合列出時的不等式求的范圍.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)(,且).(ii)最大值為4.【解題分析】

(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關于k的函數關系式;(ii)由可得,推導出,設(),利用導函數判斷的單調性,由單調性可求出的最大值【題目詳解】(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,則,∴恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關于k的函數關系式為(,且)(ii)由題意知,得,,,,設(),則,令,則,∴當時,,即在上單調增減,又,,,又,,,∴k的最大值為4【題目點撥】本題考查古典概型的概率公式的應用,考查隨機變量及其分布,考查利用導函數判斷函數的單調性18、(1)證明見詳解;(2)【解題分析】

(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股定理可證得,結合,可證明平面.再根據面面垂直的判定定理,可證平面平面.(2)以為坐標原點,建立如圖所示的空間直角坐標系,由點F在線段上,設,得出的坐標,進而求出平面的一個法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結合為平面的一個法向量,用向量法即可求出與的夾角,結合圖形,寫出二面角的大小.【題目詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點,連接,,,平面平面平面..平面平面(2)以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設.則設平面的一個法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個法向量,二面角的大小為.【題目點撥】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問題,屬于中檔題.19、(1);(2).【解題分析】

(1)把代入已知條件,得到關于的方程,得到的值,從而得到的值.(2)由(1)中得到的的值和已知條件,求出,再根據正弦定理求出邊長.【題目詳解】(1)因為,,所以,,所以,即.因為,所以,因為,所以.(2).在中,由正弦定理得,所以,解得.【題目點撥】本題考查三角函數公式的運用,正弦定理解三角形,屬于簡單題.20、(1)證明見解析(2)【解題分析】

(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【題目詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設的中點為,以為原點,以,,所在直線分別為,,軸,建立空間直角坐標系,則,,,,,所以,,.設平面的法向量為,由得取.設直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【題目點撥】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎題.21、(1);(2).【解題分析】

(1)由正弦定理直接可求,然后運用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論