2024屆吉林省高中高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁(yè)
2024屆吉林省高中高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁(yè)
2024屆吉林省高中高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁(yè)
2024屆吉林省高中高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁(yè)
2024屆吉林省高中高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆吉林省高中高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln22.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.83.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.64.正方形的邊長(zhǎng)為,是正方形內(nèi)部(不包括正方形的邊)一點(diǎn),且,則的最小值為()A. B. C. D.5.已知函數(shù)在區(qū)間上恰有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達(dá)線人數(shù)減少C.與2016年相比,2019年二本達(dá)線人數(shù)增加了0.3倍D.2016年與2019年藝體達(dá)線人數(shù)相同7.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.8.設(shè)為銳角,若,則的值為()A. B. C. D.9.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.10.在中,,則()A. B. C. D.11.“紋樣”是中國(guó)藝術(shù)寶庫(kù)的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個(gè)點(diǎn),己知恰有80個(gè)點(diǎn)落在陰影部分據(jù)此可估計(jì)陰影部分的面積是()A. B. C.10 D.12.一個(gè)正三角形的三個(gè)頂點(diǎn)都在雙曲線的右支上,且其中一個(gè)頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩圓相交于兩點(diǎn),,若兩圓圓心都在直線上,則的值是________________.14.已知,則______,______.15.設(shè)為等比數(shù)列的前項(xiàng)和,若,且,,成等差數(shù)列,則.16.根據(jù)如圖所示的偽代碼,輸出的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.18.(12分)已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實(shí)數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點(diǎn),線段的中點(diǎn)為.(1)求線段長(zhǎng)的最小值;(2)求點(diǎn)的軌跡方程.20.(12分)已知拋物線C:x24py(p為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過點(diǎn)F且斜率為k(k0)的直線交C于A,B兩點(diǎn),線段AB的垂直平分線交y軸于點(diǎn)E,拋物線C在點(diǎn)A,B處的切線相交于點(diǎn)G.記四邊形AEBG的面積為S.(1)求點(diǎn)G的軌跡方程;(2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請(qǐng)求出所有滿足條件的S的值;若不是,請(qǐng)說明理由.21.(12分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).22.(10分)已知函數(shù).(1)求的極值;(2)若,且,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.【點(diǎn)睛】本題考查了非線性相關(guān)的二次擬合問題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.2、B【解析】

求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點(diǎn)求出即可.【詳解】因?yàn)?,所以,故,解得,又切線過點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.3、C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.4、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡(jiǎn)求解.【詳解】解:建立以為原點(diǎn),以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時(shí),的最小值為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.5、A【解析】

函數(shù)的零點(diǎn)就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個(gè)數(shù)得出的范圍.【詳解】由題意得有四個(gè)大于的不等實(shí)根,記,則上述方程轉(zhuǎn)化為,即,所以或.因?yàn)椋?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,最小值為.因?yàn)?,所以有兩個(gè)符合條件的實(shí)數(shù)解,故在區(qū)間上恰有四個(gè)不相等的零點(diǎn),需且.故選:A.【點(diǎn)睛】本題考查復(fù)合函數(shù)的零點(diǎn).考查轉(zhuǎn)化與化歸思想,函數(shù)零點(diǎn)轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.6、A【解析】

設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡(jiǎn)單的計(jì)算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯(cuò)誤;2019年二本達(dá)線人數(shù),2016年二本達(dá)線人數(shù),增加了倍,故C錯(cuò)誤;2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),故D錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識(shí)圖的能力,是一道較為簡(jiǎn)單的統(tǒng)計(jì)類的題目.7、D【解析】

本題首先可以通過題意畫出圖像并過點(diǎn)作垂線交于點(diǎn),然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長(zhǎng)度,的長(zhǎng)度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果。【詳解】根據(jù)題意可畫出以上圖像,過點(diǎn)作垂線并交于點(diǎn),因?yàn)椋陔p曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,,,,所以,三角形是直角三角形,因?yàn)椋?,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡(jiǎn)得,,,,故選D。【點(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。8、D【解析】

用誘導(dǎo)公式和二倍角公式計(jì)算.【詳解】.故選:D.【點(diǎn)睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.9、A【解析】

由得,然后分子分母同時(shí)乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因?yàn)?所以,所以復(fù)數(shù)的虛部為.故選A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運(yùn)算的方法是分子分母同時(shí)乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運(yùn)算.10、A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.11、D【解析】

直接根據(jù)幾何概型公式計(jì)算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點(diǎn)睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.12、D【解析】

因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上,列出方程解得即可得到結(jié)論.【詳解】由,,設(shè)的中點(diǎn)為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點(diǎn)睛】本題考查相交弦的性質(zhì),解題的關(guān)鍵在于利用相交弦的性質(zhì),即兩圓的連心線垂直平分相交弦,屬于基礎(chǔ)題.14、【解析】

利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進(jìn)而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點(diǎn)睛】本題主要考查三角函數(shù)值的計(jì)算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.15、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點(diǎn):等差數(shù)列與等比數(shù)列的性質(zhì).【名師點(diǎn)睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關(guān)于等比數(shù)列基本量的方程即可求解,考查學(xué)生等價(jià)轉(zhuǎn)化的思想與方程思想.16、7【解析】

表示初值S=1,i=1,分三次循環(huán)計(jì)算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7【點(diǎn)睛】本題考查在程序語句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、.【解析】試題分析:,所以.試題解析:B.因?yàn)?,所以?8、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)由題意可得,的坐標(biāo),結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標(biāo),再設(shè)直線,求出點(diǎn)的坐標(biāo),寫出的方程,聯(lián)立與,可求出的坐標(biāo),由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)直線,則與直線的交點(diǎn),又,設(shè)直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查運(yùn)算求解能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理計(jì)算能力.19、(1)(2)【解析】

(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時(shí),線段取得最小值,利用幾何法求弦長(zhǎng)即可.(2)當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),由利用向量的數(shù)量積等于可求解,最后驗(yàn)證當(dāng)點(diǎn)與點(diǎn)重合時(shí)也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點(diǎn)的直線,易知在圓內(nèi),當(dāng)時(shí),線段長(zhǎng)最小為當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),化簡(jiǎn)得當(dāng)點(diǎn)與點(diǎn)重合時(shí),也滿足上式,故點(diǎn)的軌跡方程為【點(diǎn)睛】本題考查了極坐標(biāo)與普通方程的互化、直線與圓的位置關(guān)系、列方程求動(dòng)點(diǎn)的軌跡方程,屬于基礎(chǔ)題.20、(1)(2)當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時(shí),S不是整數(shù).【解析】

(1)先求解導(dǎo)數(shù),得出切線方程,聯(lián)立方程得出交點(diǎn)G的軌跡方程;(2)先求解弦長(zhǎng),再分別求解點(diǎn)到直線的距離,表示出四邊形的面積,結(jié)合點(diǎn)G的橫坐標(biāo)為整數(shù)進(jìn)行判斷.【詳解】(1)設(shè),則,拋物線C的方程可化為,則,所以曲線C在點(diǎn)A處的切線方程為,在點(diǎn)B處的切線方程為,因?yàn)閮汕芯€均過點(diǎn)G,所以,所以A,B兩點(diǎn)均在直線上,所以直線AB的方程為,又因?yàn)橹本€AB過點(diǎn)F(0,p),所以,即G點(diǎn)軌跡方程為;(2)設(shè)點(diǎn)G(,),由(1)可知,直線AB的方程為,即,將直線AB的方程與拋物線聯(lián)立,,整理得,所以,,解得,因?yàn)橹本€AB的斜率,所以,且,線段AB的中點(diǎn)為M,所以直線EM的方程為:,所以E點(diǎn)坐標(biāo)為(0,),直線AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設(shè),因?yàn)閜是質(zhì)數(shù),且為整數(shù),所以或,當(dāng)時(shí),,是無理數(shù),不符題意,當(dāng)時(shí),,因?yàn)楫?dāng)時(shí),,即是無理數(shù),所以不符題意,當(dāng)時(shí),是無理數(shù),不符題意,綜上,當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時(shí),S不是整數(shù).【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系,拋物線中的切線問題通常借助導(dǎo)數(shù)來求解,四邊形的面積問題一般轉(zhuǎn)化為三角形的面積和問題,表示出面積的表達(dá)式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).21、(1);(2)1.【解析】

(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tan

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論